

attrs: Attributes without boilerplate.

Release v15.0.0 (What’s new?).

attrs is an MIT [http://choosealicense.com/licenses/mit/]-licensed Python package with class decorators that ease the chores of implementing the most common attribute-related object protocols:

>>> import attr
>>> @attr.s
... class C(object):
... x = attr.ib(default=42)
... y = attr.ib(default=attr.Factory(list))
>>> i = C(x=1, y=2)
>>> i
C(x=1, y=2)
>>> i == C(1, 2)
True
>>> i != C(2, 1)
True
>>> attr.asdict(i)
{'y': 2, 'x': 1}
>>> C()
C(x=42, y=[])
>>> C2 = attr.make_class("C2", ["a", "b"])
>>> C2("foo", "bar")
C2(a='foo', b='bar')

(If you don’t like the playful attr.s and attr.ib, you can also use their no-nonsense aliases attr.attributes and attr.attr).

You just specify the attributes to work with and attrs gives you:

	a nice human-readable __repr__,

	a complete set of comparison methods,

	an initializer,

	and much more

without writing dull boilerplate code again and again.

This gives you the power to use actual classes with actual types in your code instead of confusing tuples or confusingly behaving namedtuples.

So put down that type-less data structures and welcome some class into your life!

Note

I wrote an explanation [https://attrs.readthedocs.org/en/latest/why.html#characteristic] on why I forked my own characteristic.
It’s not dead but attrs will have more new features.

attrs’s documentation lives at Read the Docs [https://attrs.readthedocs.org/], the code on GitHub [https://github.com/hynek/attrs].
It’s rigorously tested on Python 2.6, 2.7, 3.3+, and PyPy.

User’s Guide

	Why not…

	Examples

	API

	Extending

Project Information

	Backward Compatibility

	License and Hall of Fame

	How To Contribute

	Changelog

Indices and tables

	Index

	Search Page

Why not…

…tuples?

Readability

What makes more sense while debugging:

Point(x=1, x=2)

or:

(1, 2)

?

Let’s add even more ambiguity:

Customer(id=42, reseller=23, first_name="Jane", last_name="John")

or:

(42, 23, "Jane", "John")

?

Why would you want to write customer[2] instead of customer.first_name?

Don’t get me started when you add nesting.
If you’ve never ran into mysterious tuples you had no idea what the hell they meant while debugging, you’re much smarter then I am.

Using proper classes with names and types makes program code much more readable and comprehensible [http://arxiv.org/pdf/1304.5257.pdf].
Especially when trying to grok a new piece of software or returning to old code after several months.

Extendability

Imagine you have a function that takes or returns a tuple.
Especially if you use tuple unpacking (eg. x, y = get_point()), adding additional data means that you have to change the invocation of that function everywhere.

Adding an attribute to a class concerns only those who actually care about that attribute.

…namedtuples?

The difference between collections.namedtuple() [https://docs.python.org/2/library/collections.html#collections.namedtuple]s and classes decorated by attrs is that the latter are type-sensitive and less typing aside regular classes:

>>> import attr
>>> @attr.s
... class C1(object):
... a = attr.ib()
... def print_a(self):
... print self.a
>>> @attr.s
... class C2(object):
... a = attr.ib()
>>> c1 = C1(a=1)
>>> c2 = C2(a=1)
>>> c1.a == c2.a
True
>>> c1 == c2
False
>>> c1.print_a()
1

…while namedtuple’s purpose is explicitly to behave like tuples:

>>> from collections import namedtuple
>>> NT1 = namedtuple("NT1", "a")
>>> NT2 = namedtuple("NT2", "b")
>>> t1 = NT1._make([1,])
>>> t2 = NT2._make([1,])
>>> t1 == t2 == (1,)
True

This can easily lead to surprising and unintended behaviors.

Other than that, attrs also adds nifty features like validators or default values.

…hand-written classes?

While I’m a fan of all things artisanal, writing the same nine methods all over again doesn’t qualify for me.
I usually manage to get some typos inside and there’s simply more code that can break and thus has to be tested.

To bring it into perspective, the equivalent of

>>> @attr.s
... class SmartClass(object):
... a = attr.ib()
... b = attr.ib()
>>> SmartClass(1, 2)
SmartClass(a=1, b=2)

is

>>> class ArtisanalClass(object):
... def __init__(self, a, b):
... self.a = a
... self.b = b
...
... def __repr__(self):
... return "ArtisanalClass(a={}, b={})".format(self.a, self.b)
...
... def __eq__(self, other):
... if other.__class__ is self.__class__:
... return (self.a, self.b) == (other.a, other.b)
... else:
... return NotImplemented
...
... def __ne__(self, other):
... result = self.__eq__(other)
... if result is NotImplemented:
... return NotImplemented
... else:
... return not result
...
... def __lt__(self, other):
... if other.__class__ is self.__class__:
... return (self.a, self.b) < (other.a, other.b)
... else:
... return NotImplemented
...
... def __le__(self, other):
... if other.__class__ is self.__class__:
... return (self.a, self.b) <= (other.a, other.b)
... else:
... return NotImplemented
...
... def __gt__(self, other):
... if other.__class__ is self.__class__:
... return (self.a, self.b) > (other.a, other.b)
... else:
... return NotImplemented
...
... def __ge__(self, other):
... if other.__class__ is self.__class__:
... return (self.a, self.b) >= (other.a, other.b)
... else:
... return NotImplemented
...
... def __hash__(self):
... return hash((self.a, self.b))
>>> ArtisanalClass(a=1, b=2)
ArtisanalClass(a=1, b=2)

which is quite a mouthful and it doesn’t even use any of attrs‘s more advanced features like validators or defaults values.
Also: no tests whatsoever.
And who will guarantee you, that you don’t accidentally flip the < in your tenth implementation of __gt__?

If you don’t care and like typing, I’m not gonna stop you.
But if you ever get sick of the repetitiveness, attrs will be waiting for you. :)

…characteristic

characteristic [https://characteristic.readthedocs.org/en/stable/] is a very similar and fairly popular project of mine.
So why the self-fork?
Basically after nearly a year of usage I ran into annoyances and regretted certain decisions I made early-on to make too many people happy.
In the end, I wasn’t happy using it anymore.

So I learned my lesson and attrs is the result of that.

Note

Nevertheless, characteristic is not dead.
A lot of software uses it and I will keep maintaining it.

Reasons For Forking

	Fixing those aforementioned annoyances would introduce more complexity.
More complexity means more bugs.

	Certain unused features make other common features complicated or impossible.
Prime example is the ability write your own initializers and make the generated one cooperate with it.
The new logic is much simpler allowing for writing optimal initializers.

	I want it to be possible to gradually move from characteristic to attrs.
A peaceful co-existence is much easier if it’s separate packages altogether.

	My libraries have very strict backward-compatibility policies and it would take years to get rid of those annoyances while they shape the implementation of other features.

	The name is tooo looong.

Main Differences

	The attributes are defined within the class definition such that code analyzers know about their existence.
This is useful in IDEs like PyCharm or linters like PyLint.
attrs‘s classes look much more idiomatic than characteristic‘s.
Since it’s useful to use attrs with classes you don’t control (e.g. Django models), a similar way to characteristic‘s is still supported.

	The names are held shorter and easy to both type and read.

	It is generally more opinionated towards typical uses.
This ensures I’ll not wake up in a year hating to use it.

	The generated __init__ methods are faster because of certain features that have been left out intentionally.
The generated code should be as fast as hand-written one.

Examples

Basics

The simplest possible usage would be:

>>> import attr
>>> @attr.s
... class Empty(object):
... pass
>>> Empty()
Empty()
>>> Empty() == Empty()
True
>>> Empty() is Empty()
False

So in other words: attrs useful even without actual attributes!

But you’ll usually want some data on your classes, so let’s add some:

>>> @attr.s
... class Coordinates(object):
... x = attr.ib()
... y = attr.ib()

These by default, all features are added, so you have immediately a fully functional data class with a nice repr string and comparison methods.

>>> c1 = Coordinates(1, 2)
>>> c1
Coordinates(x=1, y=2)
>>> c2 = Coordinates(x=2, y=1)
>>> c2
Coordinates(x=2, y=1)
>>> c1 == c2
False

As shown, the generated __init__ method allows both for positional and keyword arguments.

If playful naming turns you off, attrs comes with no-nonsense aliases:

>>> @attr.attributes
... class SeriousCoordinates(object):
... x = attr.attr()
... y = attr.attr()
>>> SeriousCoordinates(1, 2)
SeriousCoordinates(x=1, y=2)
>>> attr.fields(Coordinates) == attr.fields(SeriousCoordinates)
True

For private attributes, attrs will strip the leading underscores for keyword arguments:

>>> @attr.s
... class C(object):
... _x = attr.ib()
>>> C(x=1)
C(_x=1)

An additional way (not unlike characteristic) of defining attributes is supported too.
This is useful in times when you want to enhance classes that are not yours (nice __repr__ for Django models anyone?):

>>> class SomethingFromSomeoneElse(object):
... def __init__(self, x):
... self.x = x
>>> SomethingFromSomeoneElse = attr.s(these={"x": attr.ib()}, init=False)(SomethingFromSomeoneElse)
>>> SomethingFromSomeoneElse(1)
SomethingFromSomeoneElse(x=1)

Or if you want to use properties:

>>> @attr.s(these={"_x": attr.ib()})
... class ReadOnlyXSquared(object):
... @property
... def x(self):
... return self._x ** 2
>>> rox = ReadOnlyXSquared(x=5)
>>> rox
ReadOnlyXSquared(_x=5)
>>> rox.x
25
>>> rox.x = 6
Traceback (most recent call last):
 ...
AttributeError: can't set attribute

Sub-classing [https://www.youtube.com/watch?v=3MNVP9-hglc] is bad for you, but attrs will still do what you’d hope for:

>>> @attr.s
... class A(object):
... a = attr.ib()
... def get_a(self):
... return self.a
>>> @attr.s
... class B(object):
... b = attr.ib()
>>> @attr.s
... class C(B, A):
... c = attr.ib()
>>> i = C(1, 2, 3)
>>> i
C(a=1, b=2, c=3)
>>> i == C(1, 2, 3)
True
>>> i.get_a()
1

The order of the attributes is defined by the MRO [https://www.python.org/download/releases/2.3/mro/].

In Python 3, classes defined within other classes are detected [https://www.python.org/dev/peps/pep-3155/] and reflected in the __repr__.
In Python 2 though, it’s impossible.
Therefore @attr.s comes with the repr_ns option to set it manually:

>>> @attr.s
... class C(object):
... @attr.s(repr_ns="C")
... class D(object):
... pass
>>> C.D()
C.D()

repr_ns works on both Python 2 and 3.
On Python 3 is overrides the implicit detection.

Converting to Dictionaries

When you have a class with data, it often is very convenient to transform that class into a dict [https://docs.python.org/2/library/stdtypes.html#dict] (for example if you want to serialize it to JSON):

>>> attr.asdict(Coordinates(x=1, y=2))
{'y': 2, 'x': 1}

Some fields cannot or should not be transformed.
For that, attr.asdict() offers a callback that decides whether an attribute should be included:

>>> @attr.s
... class UserList(object):
... users = attr.ib()
>>> @attr.s
... class User(object):
... email = attr.ib()
... password = attr.ib()
>>> attr.asdict(UserList([User("jane@doe.invalid", "s33kred"),
... User("joe@doe.invalid", "p4ssw0rd")]),
... filter=lambda attr, value: attr.name != "password")
{'users': [{'email': 'jane@doe.invalid'}, {'email': 'joe@doe.invalid'}]}

For the common case where you want to include or exclude certain types or attributes, attrs ships with a few helpers:

>>> @attr.s
... class User(object):
... login = attr.ib()
... password = attr.ib()
... id = attr.ib()
>>> attr.asdict(User("jane", "s33kred", 42), filter=attr.filters.exclude(User.password, int))
{'login': 'jane'}
>>> @attr.s
... class C(object):
... x = attr.ib()
... y = attr.ib()
... z = attr.ib()
>>> attr.asdict(C("foo", "2", 3), filter=attr.filters.include(int, C.x))
{'x': 'foo', 'z': 3}

Defaults

Sometimes you want to have default values for your initializer.
And sometimes you even want mutable objects as default values (ever used accidentally def f(arg=[])?).
attrs has you covered in both cases:

>>> import collections
>>> @attr.s
... class Connection(object):
... socket = attr.ib()
... @classmethod
... def connect(cl, db_string):
... # connect somehow to db_string
... return cl(socket=42)
>>> @attr.s
... class ConnectionPool(object):
... db_string = attr.ib()
... pool = attr.ib(default=attr.Factory(collections.deque))
... debug = attr.ib(default=False)
... def get_connection(self):
... try:
... return self.pool.pop()
... except IndexError:
... if self.debug:
... print "New connection!"
... return Connection.connect(self.db_string)
... def free_connection(self, conn):
... if self.debug:
... print "Connection returned!"
... self.pool.appendleft(conn)
...
>>> cp = ConnectionPool("postgres://localhost")
>>> cp
ConnectionPool(db_string='postgres://localhost', pool=deque([]), debug=False)
>>> conn = cp.get_connection()
>>> conn
Connection(socket=42)
>>> cp.free_connection(conn)
>>> cp
ConnectionPool(db_string='postgres://localhost', pool=deque([Connection(socket=42)]), debug=False)

More information on why class methods for constructing objects are awesome can be found in this insightful blog post [http://as.ynchrono.us/2014/12/asynchronous-object-initialization.html].

Validators

Although your initializers should be a dumb as possible, it can come handy to do some kind of validation on the arguments.
That’s when attr.ib()’s validator argument comes into play.
A validator is simply a callable that takes three arguments:

	The instance that’s being validated.

	The attribute that it’s validating

	and finally the value that is passed for it.

If the value does not pass the validator’s standards, it just raises an appropriate exception.
Since the validator runs after the instance is initialized, you can refer to other attributes while validating :

>>> def x_smaller_than_y(instance, attribute, value):
... if value >= instance.y:
... raise ValueError("'x' has to be smaller than 'y'!")
>>> @attr.s
... class C(object):
... x = attr.ib(validator=x_smaller_than_y)
... y = attr.ib()
>>> C(x=3, y=4)
C(x=3, y=4)
>>> C(x=4, y=3)
Traceback (most recent call last):
 ...
ValueError: 'x' has to be smaller than 'y'!

attrs won’t intercept your changes to those attributes but you can always call attr.validate() on any instance to verify, that it’s still valid:

>>> i = C(4, 5)
>>> i.x = 5 # works, no magic here
>>> attr.validate(i)
Traceback (most recent call last):
 ...
ValueError: 'x' has to be smaller than 'y'!

attrs ships with a bunch of validators, make sure to check them out before writing your own:

>>> @attr.s
... class C(object):
... x = attr.ib(validator=attr.validators.instance_of(int))
>>> C(42)
C(x=42)
>>> C("42")
Traceback (most recent call last):
 ...
TypeError: ("'x' must be <type 'int'> (got '42' that is a <type 'str'>).", Attribute(name='x', default=NOTHING, factory=NOTHING, validator=<instance_of validator for type <type 'int'>>), <type 'int'>, '42')

If you like zope.interface [http://docs.zope.org/zope.interface/api.html#zope-interface-interface-specification], attrs also comes with a attr.validators.provides() validator:

>>> import zope.interface
>>> class IFoo(zope.interface.Interface):
... def f():
... """A function called f."""
>>> @attr.s
... class C(object):
... x = attr.ib(validator=attr.validators.provides(IFoo))
>>> C(x=object())
Traceback (most recent call last):
 ...
TypeError: ("'x' must provide <InterfaceClass __builtin__.IFoo> which <object object at 0x10bafaaf0> doesn't.", Attribute(name='x', default=NOTHING, factory=NOTHING, validator=<provides validator for interface <InterfaceClass __builtin__.IFoo>>), <InterfaceClass __builtin__.IFoo>, <object object at 0x10bafaaf0>)
>>> @zope.interface.implementer(IFoo)
... @attr.s
... class Foo(object):
... def f(self):
... print("hello, world")
>>> C(Foo())
C(x=Foo())

You can also disable them globally:

>>> attr.set_run_validators(False)
>>> C(42)
C(x=42)
>>> attr.set_run_validators(True)
>>> C(42)
Traceback (most recent call last):
 ...
TypeError: ("'x' must provide <InterfaceClass __builtin__.IFoo> which 42 doesn't.", Attribute(name='x', default=NOTHING, validator=<provides validator for interface <InterfaceClass __builtin__.IFoo>>, repr=True, cmp=True, hash=True, init=True), <InterfaceClass __builtin__.IFoo>, 42)

Other Goodies

Do you like Rich Hickey?
I’m glad to report that Clojure’s core feature is part of attrs: assoc [https://clojuredocs.org/clojure.core/assoc]!
I guess that means Clojure can be shut down now, sorry Rich!

>>> @attr.s
... class C(object):
... x = attr.ib()
... y = attr.ib()
>>> i1 = C(1, 2)
>>> i1
C(x=1, y=2)
>>> i2 = attr.assoc(i1, y=3)
>>> i2
C(x=1, y=3)
>>> i1 == i2
False

Sometimes you may want to create a class programmatically.
attrs won’t let you down:

>>> @attr.s
... class C1(object):
... x = attr.ib()
... y = attr.ib()
>>> C2 = attr.make_class("C2", ["x", "y"])
>>> attr.fields(C1) == attr.fields(C2)
True

You can still have power over the attributes if you pass a dictionary of name: attr.ib mappings and can pass arguments to @attr.s:

>>> C = attr.make_class("C", {"x": attr.ib(default=42),
... "y": attr.ib(default=attr.Factory(list))},
... repr=False)
>>> i = C()
>>> i # no repr added!
<attr._make.C object at ...>
>>> i.x
42
>>> i.y
[]

Finally, you can exclude single attributes from certain methods:

>>> @attr.s
... class C(object):
... user = attr.ib()
... password = attr.ib(repr=False)
>>> C("me", "s3kr3t")
C(user='me')

API

attrs works by decorating a class using attr.s() and then optionally defining attributes on the class using attr.ib().

Note

When this documentation speaks about “attrs attributes” it means those attributes that are defined using attr.ib() in the class body.

What follows is the API explanation, if you’d like a more hands-on introduction, have a look at Examples.

Core

	
attr.s(these=None, repr_ns=None, repr=True, cmp=True, hash=True, init=True)

	A class decorator that adds dunder [https://wiki.python.org/moin/DunderAlias]-methods according to the
specified attributes using attr.ib() or the these argument.

	Parameters:	
	these (class:dict of str [https://docs.python.org/2/library/functions.html#str] to attr.ib()) – A dictionary of name to attr.ib() mappings. This is
useful to avoid the definition of your attributes within the class body
because you can’t (e.g. if you want to add __repr__ methods to
Django models) or don’t want to (e.g. if you want to use
properties [https://docs.python.org/2/library/functions.html#property]).

If these is not None, the class body is ignored.

	repr_ns – When using nested classes, there’s no way in Python 2 to
automatically detect that. Therefore it’s possible to set the
namespace explicitly for a more meaningful repr output.

	repr (bool [https://docs.python.org/2/library/functions.html#bool]) – Create a __repr__ method with a human readable
represantation of attrs attributes..

	cmp (bool [https://docs.python.org/2/library/functions.html#bool]) – Create __eq__, __ne__, __lt__, __le__,
__gt__, and __ge__ methods that compare the class as if it were
a tuple of its attrs attributes. But the attributes are only
compared, if the type of both classes is identical!

	hash (bool [https://docs.python.org/2/library/functions.html#bool]) – Create a __hash__ method that returns the hash() [https://docs.python.org/2/library/functions.html#hash] of
a tuple of all attrs attribute values.

	init (bool [https://docs.python.org/2/library/functions.html#bool]) – Create a __init__ method that initialiazes the attrs
attributes. Leading underscores are stripped for the argument name.

Note

attrs also comes with a less playful alias attr.attributes.

For example:

>>> import attr
>>> @attr.s
... class C(object):
... _private = attr.ib()
>>> C(private=42)
C(_private=42)
>>> class D(object):
... def __init__(self, x):
... self.x = x
>>> D(1)
<D object at ...>
>>> D = attr.s(these={"x": attr.ib()}, init=False)(D)
>>> D(1)
D(x=1)

	
attr.ib(default=NOTHING, validator=None, repr=True, cmp=True, hash=True, init=True)

	Create a new attribute on a class.

Warning

Does not do anything unless the class is also decorated with
attr.s()!

	Parameters:	
	default (Any value.) – Value that is used if an attrs-generated
__init__ is used and no value is passed while instantiating. If
the value an instance of Factory, it callable will be use to
construct a new value (useful for mutable datatypes like lists or
dicts).

	validator (callable [https://docs.python.org/2/library/functions.html#callable]) – callable() [https://docs.python.org/2/library/functions.html#callable] that is called by attrs-generated
__init__ methods after the instance has been initialized. They
receive the initialized instance, the Attribute, and the
passed value.

The return value is not inspected so the validator has to throw an
exception itself.

They can be globally disabled and re-enabled using
get_run_validators().

	repr (bool [https://docs.python.org/2/library/functions.html#bool]) – Include this attribute in the generated __repr__ method.

	cmp (bool [https://docs.python.org/2/library/functions.html#bool]) – Include this attribute in the generated comparison methods
(__eq__ et al).

	hash (bool [https://docs.python.org/2/library/functions.html#bool]) – Include this attribute in the generated __hash__ method.

	init (bool [https://docs.python.org/2/library/functions.html#bool]) – Include this attribute in the generated __init__ method.

Note

attrs also comes with a less playful alias attr.attr.

	
class attr.Attribute(**kw)

	Read-only representation of an attribute.

	Attribute name:	The name of the attribute.

Plus all arguments of attr.ib().

Instances of this class are frequently used for introspection purposes like:

	Class attributes on attrs-decorated classes after @attr.s has been applied.

	fields() returns a tuple of them.

	Validators get them passed as the first argument.

Warning

You should never instantiate this class yourself!

>>> import attr
>>> @attr.s
... class C(object):
... x = attr.ib()
>>> C.x
Attribute(name='x', default=NOTHING, validator=None, repr=True, cmp=True, hash=True, init=True)

	
attr.make_class(name, attrs, **attributes_arguments)

	A quick way to create a new class called name with attrs.

	Parameters:	
	name (str [https://docs.python.org/2/library/functions.html#str]) – The name for the new class.

	attrs (list or dict [https://docs.python.org/2/library/stdtypes.html#dict]) – A list of names or a dictionary of mappings of names to
attributes.

	attributes_arguments – Passed unmodified to attr.s().

	Returns:	A new class with attrs.

	Return type:	type [https://docs.python.org/2/library/functions.html#type]

This is handy if you want to programmatically create classes.

For example:

>>> C1 = attr.make_class("C1", ["x", "y"])
>>> C1(1, 2)
C1(x=1, y=2)
>>> C2 = attr.make_class("C2", {"x": attr.ib(default=42),
... "y": attr.ib(default=attr.Factory(list))})
>>> C2()
C2(x=42, y=[])

	
class attr.Factory(factory)

	Stores a factory callable.

If passed as the default value to attr.ib(), the factory is used to
generate a new value.

For example:

>>> @attr.s
... class C(object):
... x = attr.ib(default=attr.Factory(list))
>>> C()
C(x=[])

Helpers

attrs comes with a bunch of helper methods that make the work with it easier:

	
attr.fields(cl)

	Returns the tuple of attrs attributes for a class.

	Parameters:	cl (class) – Class to introspect.

	Raises:	
	TypeError – If cl is not a class.

	ValueError – If cl is not an attrs class.

	Return type:	tuple of attr.Attribute

For example:

>>> @attr.s
... class C(object):
... x = attr.ib()
... y = attr.ib()
>>> attr.fields(C)
(Attribute(name='x', default=NOTHING, validator=None, repr=True, cmp=True, hash=True, init=True), Attribute(name='y', default=NOTHING, validator=None, repr=True, cmp=True, hash=True, init=True))

	
attr.has(cl)

	Check whether cl is a class with attrs attributes.

	Parameters:	cl (type [https://docs.python.org/2/library/functions.html#type]) – Class to introspect.

	Raises:	TypeError – If cl is not a class.

	Return type:	bool [https://docs.python.org/2/library/functions.html#bool]

For example:

>>> @attr.s
... class C(object):
... pass
>>> attr.has(C)
True
>>> attr.has(object)
False

	
attr.asdict(inst, recurse=True, filter=None)

	Return the attrs attribute values of i as a dict. Optionally recurse
into other attrs-decorated classes.

	Parameters:	
	inst – Instance of a attrs-decorated class.

	recurse (bool [https://docs.python.org/2/library/functions.html#bool]) – Recurse into classes that are also attrs-decorated.

	filter – A callable whose return code deteremines whether an
attribute or element is included (True) or dropped (False). Is
called with the attr.Attribute as the first argument and the
value as the second argument.

	Return type:	dict [https://docs.python.org/2/library/stdtypes.html#dict]

For example:

>>> @attr.s
... class C(object):
... x = attr.ib()
... y = attr.ib()
>>> attr.asdict(C(1, C(2, 3)))
{'y': {'y': 3, 'x': 2}, 'x': 1}

attrs comes with some handy helpers for filtering:

	
attr.filters.include(*what)

	Whitelist what.

	Parameters:	what (list of type [https://docs.python.org/2/library/functions.html#type] or attr.Attribute s.) – What to whitelist.

	Return type:	callable

	
attr.filters.exclude(*what)

	Blacklist what.

	Parameters:	what (list of classes or attr.Attribute s.) – What to blacklist.

	Return type:	callable

	
attr.assoc(inst, **changes)

	Copy inst and apply changes.

	Parameters:	
	inst – Instance of a class with attrs attributes.

	changes – Keyword changes in the new copy.

	Returns:	A copy of inst with changes incorporated.

For example:

>>> @attr.s
... class C(object):
... x = attr.ib()
... y = attr.ib()
>>> i1 = C(1, 2)
>>> i1
C(x=1, y=2)
>>> i2 = attr.assoc(i1, y=3)
>>> i2
C(x=1, y=3)
>>> i1 == i2
False

	
attr.validate(inst)

	Validate all attributes on inst that have a validator.

Leaves all exceptions through.

	Parameters:	inst – Instance of a class with attrs attributes.

For example:

>>> @attr.s
... class C(object):
... x = attr.ib(validator=attr.validators.instance_of(int))
>>> i = C(1)
>>> i.x = "1"
>>> attr.validate(i)
Traceback (most recent call last):
 ...
TypeError: ("'x' must be <type 'int'> (got '1' that is a <type 'str'>).", Attribute(name='x', default=NOTHING, validator=<instance_of validator for type <type 'int'>>, repr=True, cmp=True, hash=True, init=True), <type 'int'>, '1')

Validators can be globally disabled if you want to run them only in development and tests but not in production because you fear their performance impact:

	
attr.set_run_validators(run)

	Set whether or not validators are run. By default, they are run.

	
attr.get_run_validators()

	Return whether or not validators are run.

Validators

attrs comes with some common validators within the attrs.validators module:

	
attr.validators.instance_of(type)

	A validator that raises a TypeError if the initializer is called
with a wrong type for this particular attribute (checks are perfomed using
isinstance() [https://docs.python.org/2/library/functions.html#isinstance]).

	Parameters:	type (type [https://docs.python.org/2/library/functions.html#type]) – The type to check for.

The TypeError is raised with a human readable error message, the
attribute (of type attr.Attribute), the expected type and the
value it got.

For example:

>>> @attr.s
... class C(object):
... x = attr.ib(validator=attr.validators.instance_of(int))
>>> C(42)
C(x=42)
>>> C("42")
Traceback (most recent call last):
 ...
TypeError: ("'x' must be <type 'int'> (got '42' that is a <type 'str'>).", Attribute(name='x', default=NOTHING, validator=<instance_of validator for type <type 'int'>>), <type 'int'>, '42')

	
attr.validators.provides(interface)

	A validator that raises a TypeError if the initializer is called
with an object that does not provide the requested interface (checks are
perfomed using value.providedBy(interface) (see zope.interface [http://docs.zope.org/zope.interface/]).

	Parameters:	interface (zope.interface.Interface) – The interface to check for.

The TypeError is raised with a human readable error message, the
attribute (of type attr.Attribute), the expected interface, and
the value it got.

Extending

Each attrs-decorated class has a __attrs_attrs__ class attribute.
It is a tuple of attr.Attribute carrying meta-data about each attribute.

So it is fairly simple to build your own decorators on top of attrs:

>>> import attr
>>> def print_attrs(cl):
... print cl.__attrs_attrs__
>>> @print_attrs
... @attr.s
... class C(object):
... a = attr.ib()
(Attribute(name='a', default=NOTHING, validator=None, repr=True, cmp=True, hash=True, init=True),)

Warning

The attr.s() decorator must be applied first because it puts __attrs_attrs__ in place!
That means that is has to come after your decorator because:

@a
@b
def f():
 pass

is just syntactic sugar [https://en.wikipedia.org/wiki/Syntactic_sugar] for:

def original_f():
 pass

f = a(b(original_f))

Backward Compatibility

attrs has a very strong backward compatibility policy that is inspired by the one of the Twisted framework [https://twistedmatrix.com/trac/wiki/CompatibilityPolicy].

Put simply, you shouldn’t ever be afraid to upgrade attrs if you’re using its public APIs.
If there will ever be need to break compatibility, it will be announced in the Changelog, raise deprecation warning for a year before it’s finally really broken.

Warning

The structure of the attr.Attribute class is exempted from this rule.
It will change in the future since it should be considered read-only, that shouldn’t matter.

However if you intend to build extensions on top of attrs you have to anticipate that.

License and Hall of Fame

attrs is licensed under the permissive MIT [http://choosealicense.com/licenses/mit/] license.
The full license text can be also found in the source code repository [https://github.com/hynek/attrs/blob/master/LICENSE].

Authors

attrs is written and maintained by Hynek Schlawack [https://hynek.me/].

The development is kindly supported by Variomedia AG [https://www.variomedia.de/].

It’s the spiritual successor of characteristic [https://characteristic.readthedocs.org/] and aspires to fix some of it clunkiness and unfortunate decisions. Both were inspired by Twisted’s FancyEqMixin [https://twistedmatrix.com/documents/current/api/twisted.python.util.FancyEqMixin.html] but both are implemented using class decorators because sub-classing is bad for you [https://www.youtube.com/watch?v=3MNVP9-hglc], m’kay?

The following folks helped forming attrs into what it is now:

	Glyph [https://github.com/glyph/]

	HawkOwl [https://github.com/hawkowl]

	Lynn Root [https://github.com/econchick]

	Wouter Bolsterlee [https://github.com/wbolster/]

Of course characteristic’s hall of fame [https://characteristic.readthedocs.org/en/stable/license.html] applies as well since they share a lot of code.

How To Contribute

Every open source project lives from the generous help by contributors that sacrifice their time and attrs is no different.

To make participation as pleasant as possible, this project adheres to the Code of Conduct [https://www.python.org/psf/codeofconduct/] by the Python Software Foundation.

Here are a few guidelines to get you started:

	Add yourself to the AUTHORS.rst [https://github.com/hynek/attrs/blob/master/AUTHORS.rst] file in an alphabetical fashion.
Every contribution is valuable and shall be credited.

	If your change is noteworthy, add an entry to the changelog [https://github.com/hynek/attrs/blob/master/docs/changelog.rst].

	No contribution is too small; please submit as many fixes for typos and grammar bloopers as you can!

	Don’t break backward compatibility [https://attrs.readthedocs.org/en/latest/backward-compatibility.html].

	Always add tests and docs for your code.
This is a hard rule; patches with missing tests or documentation won’t be merged.
If a feature is not tested or documented, it doesn’t exist.

	Obey PEP 8 [https://www.python.org/dev/peps/pep-0008/] and PEP 257 [https://www.python.org/dev/peps/pep-0257/].

	Write good commit messages [http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html].

Note

If you have something great but aren’t sure whether it adheres – or even can adhere – to the rules above: please submit a pull request anyway!

In the best case, we can mold it into something, in the worst case the pull request gets politely closed.
There’s absolutely nothing to fear.

Thank you for considering to contribute to attrs!
If you have any question or concerns, feel free to reach out to me.

Changelog

Versions are year-based with a strict backwards-compatibility policy.
The third digit is only for regressions.

15.0.0 (2015-04-15)

Changes:

	Initial release.

Index

 A
 | E
 | F
 | G
 | H
 | I
 | M
 | P
 | S
 | V

A

 	
 	asdict() (in module attr)

 	
 	assoc() (in module attr)

 	Attribute (class in attr)

E

 	
 	exclude() (in module attr.filters)

F

 	
 	Factory (class in attr)

 	
 	fields() (in module attr)

G

 	
 	get_run_validators() (in module attr)

H

 	
 	has() (in module attr)

I

 	
 	ib() (in module attr)

 	
 	include() (in module attr.filters)

 	instance_of() (in module attr.validators)

M

 	
 	make_class() (in module attr)

P

 	
 	provides() (in module attr.validators)

S

 	
 	s() (in module attr)

 	
 	set_run_validators() (in module attr)

V

 	
 	validate() (in module attr)

 _static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/comment.png

_static/plus.png

_static/ajax-loader.gif

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		attrs: Attributes without boilerplate.

 		Why not…

 		…tuples?

 		Readability

 		Extendability

 		…namedtuples?

 		…hand-written classes?

 		…characteristic

 		Reasons For Forking

 		Main Differences

 		Examples

 		Basics

 		Converting to Dictionaries

 		Defaults

 		Validators

 		Other Goodies

 		API

 		Core

 		Helpers

 		Validators

 		Extending

 		Backward Compatibility

 		License and Hall of Fame

 		Authors

 		How To Contribute

 		Changelog

 		15.0.0 (2015-04-15)

 		Changes:

_static/up-pressed.png

_static/down.png

_static/up.png

