
attrs
Release 17.1.0

Sep 25, 2017

Contents

1 Testimonials 3

2 User’s Guide 5
2.1 Overview . 5
2.2 Why not. 7
2.3 Examples . 11
2.4 API . 21
2.5 Extending . 32
2.6 How Does It Work? . 33

3 Project Information 35
3.1 License and Credits . 35
3.2 Backward Compatibility . 35
3.3 How To Contribute . 36
3.4 Contributor Covenant Code of Conduct . 38
3.5 Changelog . 40

4 Indices and tables 45

i

ii

attrs, Release 17.1.0

Release v17.1.0 (What’s new?).

attrs is the Python package that will bring back the joy of writing classes by relieving you from the drudgery of
implementing object protocols (aka dunder methods).

Its main goal is to help you to write concise and correct software without slowing down your code.

If you want to know how this looks like, jump right into Overview. If you really want to see attrs in action, Examples
will give you a comprehensive rundown of its features. If you’re skeptical and want to know how it works first, check
out “How Does It Work?”.

Contents 1

https://nedbatchelder.com/blog/200605/dunder.html

attrs, Release 17.1.0

2 Contents

CHAPTER 1

Testimonials

I’m looking forward to is being able to program in Python-with-attrs everywhere. It exerts a subtle, but
positive, design influence in all the codebases I’ve see it used in.

—Glyph Lefkowitz, creator of Twisted and Software Developer at Rackspace in The One Python Library
Everyone Needs

I’m increasingly digging your attr.ocity. Good job!

—Łukasz Langa, prolific CPython core developer and Production Engineer at Facebook

Writing a fully-functional class using attrs takes me less time than writing this testimonial.

—Amber Hawkie Brown, Twisted Release Manager and Computer Owl

3

https://twistedmatrix.com/
https://glyph.twistedmatrix.com/2016/08/attrs.html
https://glyph.twistedmatrix.com/2016/08/attrs.html

attrs, Release 17.1.0

4 Chapter 1. Testimonials

CHAPTER 2

User’s Guide

Overview

In order to fullfil its ambitious goal of bringing back the joy to writing classes, it gives you a class decorator and a way
to declaratively define the attributes on that class:

>>> import attr
>>> @attr.s
... class Point(object):
... x = attr.ib(default=42)
... y = attr.ib(default=attr.Factory(list))
...
... def hard_math(self, z):
... return self.x * self.y * z
>>> pt = Point(x=1, y=2)
>>> pt
Point(x=1, y=2)
>>> pt.hard_math(3)
6
>>> pt == Point(1, 2)
True
>>> pt != Point(2, 1)
True
>>> attr.asdict(pt)
{'x': 1, 'y': 2}
>>> Point()
Point(x=42, y=[])
>>> C = attr.make_class("C", ["a", "b"])
>>> C("foo", "bar")
C(a='foo', b='bar')

After declaring your attributes attrs gives you:

• a concise and explicit overview of the class’s attributes,

5

attrs, Release 17.1.0

• a nice human-readable __repr__,

• a complete set of comparison methods,

• an initializer,

• and much more,

without writing dull boilerplate code again and again and without runtime performance penalties.

This gives you the power to use actual classes with actual types in your code instead of confusing tuples or confus-
ingly behaving namedtuples. Which in turn encourages you to write small classes that do one thing well. Never
again violate the single responsibility principle just because implementing __init__ et al is a painful drag.

Philosophy

It’s about regular classes. attrs for creating well-behaved classes with a type, attributes, methods, and every-
thing that comes with a class. It can be used for data-only containers like namedtuples or types.
SimpleNamespace but they’re just a sub-genre of what attrs is good for.

The class belongs to the users. You define a class and attrs adds static methods to that class based on the attributes
you declare. The end. It doesn’t add meta classes. It doesn’t add classes you’ve never heard of to your inheri-
tance tree. An attrs class in runtime is indistiguishable from a regular class: because it is a regular class with
a few boilerplate-y methods attached.

Be light on API impact. As convenient as it seems at first, attrs will not tack on any methods to your classes
save the dunder ones. Hence all the useful tools that come with attrs live in functions that operate on top of
instances. Since they take an attrs instance as their first argument, you can attach them to your classes with
one line of code.

Performance matters. attrs runtime impact is very close to zero because all the work is done when the class is
defined. Once you’re instantiating it, attrs is out of the picture completely.

No surprises. attrs creates classes that arguably work the way a Python beginner would reasonably expect them to
work. It doesn’t try to guess what you mean because explicit is better than implicit. It doesn’t try to be clever
because software shouldn’t be clever.

Check out How Does It Work? if you’d like to know how it achieves all of the above.

What attrs Is Not

attrs does not invent some kind of magic system that pulls classes out of its hat using meta classes, runtime intro-
spection, and shaky interdependencies.

All attrs does is take your declaration, write dunder methods based on that information, and attach them to your
class. It does nothing dynamic at runtime, hence zero runtime overhead. It’s still your class. Do with it as you please.

On the attr.s and attr.ib Names

The attr.s decorator and the attr.ib function aren’t any obscure abbreviations. They are a concise and highly
readable way to write attrs and attrib with an explicit namespace.

At first, some people have a negative gut reaction to that; resembling the reactions to Python’s significant whitespace.
And as with that, once one gets used to it, the readability and explicitness of that API prevails and delights.

For those who can’t swallow that API at all, attrs comes with serious business aliases: attr.attrs and attr.
attrib.

6 Chapter 2. User’s Guide

https://www.destroyallsoftware.com/talks/boundaries
https://en.wikipedia.org/wiki/Single_responsibility_principle

attrs, Release 17.1.0

Therefore, the following class definition is identical to the previous one:

>>> from attr import attrs, attrib, Factory
>>> @attrs
... class C(object):
... x = attrib(default=42)
... y = attrib(default=Factory(list))
>>> C()
C(x=42, y=[])

Use whichever variant fits your taste better.

Why not. . .

If you’d like third party’s account why attrs is great, have a look at Glyph’s The One Python Library Everyone
Needs!

. . . tuples?

Readability

What makes more sense while debugging:

Point(x=1, y=2)

or:

(1, 2)

?

Let’s add even more ambiguity:

Customer(id=42, reseller=23, first_name="Jane", last_name="John")

or:

(42, 23, "Jane", "John")

?

Why would you want to write customer[2] instead of customer.first_name?

Don’t get me started when you add nesting. If you’ve never ran into mysterious tuples you had no idea what the hell
they meant while debugging, you’re much smarter then yours truly.

Using proper classes with names and types makes program code much more readable and comprehensible. Especially
when trying to grok a new piece of software or returning to old code after several months.

Extendability

Imagine you have a function that takes or returns a tuple. Especially if you use tuple unpacking (eg. x, y =
get_point()), adding additional data means that you have to change the invocation of that function everywhere.

Adding an attribute to a class concerns only those who actually care about that attribute.

2.2. Why not. . . 7

https://glyph.twistedmatrix.com/2016/08/attrs.html
https://glyph.twistedmatrix.com/2016/08/attrs.html
https://arxiv.org/pdf/1304.5257.pdf

attrs, Release 17.1.0

. . . namedtuples?

The difference between collections.namedtuple()s and classes decorated by attrs is that the latter are
type-sensitive and require less typing as compared with regular classes:

>>> import attr
>>> @attr.s
... class C1(object):
... a = attr.ib()
... def print_a(self):
... print(self.a)
>>> @attr.s
... class C2(object):
... a = attr.ib()
>>> c1 = C1(a=1)
>>> c2 = C2(a=1)
>>> c1.a == c2.a
True
>>> c1 == c2
False
>>> c1.print_a()
1

. . . while a namedtuple is explicitly intended to behave like a tuple:

>>> from collections import namedtuple
>>> NT1 = namedtuple("NT1", "a")
>>> NT2 = namedtuple("NT2", "b")
>>> t1 = NT1._make([1,])
>>> t2 = NT2._make([1,])
>>> t1 == t2 == (1,)
True

This can easily lead to surprising and unintended behaviors.

Opinions on object immutability vary. With attrs, the choice is yours. Immutable classes are created by passing a
frozen=True argument to the attr.s() decorator. By default, however, classes created by attrs are regular
Python classes and therefore mutable:

>>> import attr
>>> @attr.s
... class Customer(object):
... first_name = attr.ib()
>>> c1 = Customer(first_name="Kaitlyn")
>>> c1.first_name
'Kaitlyn'
>>> c1.first_name = "Katelyn"
>>> c1.first_name
'Katelyn'

. . . while classes created with collections.namedtuple() inherit from tuple and are therefore always im-
mutable:

>>> from collections import namedtuple
>>> Customer = namedtuple("Customer", "first_name")
>>> c1 = Customer(first_name="Kaitlyn")
>>> c1.first_name
'Kaitlyn'

8 Chapter 2. User’s Guide

https://docs.python.org/3/library/collections.html#collections.namedtuple
https://docs.python.org/3/library/collections.html#collections.namedtuple

attrs, Release 17.1.0

>>> c1.first_name = "Katelyn"
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
AttributeError: can't set attribute

Other than that, attrs also adds nifty features like validators, converters, and default values.

. . . dicts?

Dictionaries are not for fixed fields.

If you have a dict, it maps something to something else. You should be able to add and remove values.

Objects, on the other hand, are supposed to have specific fields of specific types, because their methods have strong
expectations of what those fields and types are.

attrs lets you be specific about those expectations; a dictionary does not. It gives you a named entity (the class) in
your code, which lets you explain in other places whether you take a parameter of that class or return a value of that
class.

In other words: if your dict has a fixed and known set of keys, it is an object, not a hash.

. . . hand-written classes?

While we’re fans of all things artisanal, writing the same nine methods all over again doesn’t qualify for me. I usually
manage to get some typos inside and there’s simply more code that can break and thus has to be tested.

To bring it into perspective, the equivalent of

>>> @attr.s
... class SmartClass(object):
... a = attr.ib()
... b = attr.ib()
>>> SmartClass(1, 2)
SmartClass(a=1, b=2)

is

>>> class ArtisanalClass(object):
... def __init__(self, a, b):
... self.a = a
... self.b = b
...
... def __repr__(self):
... return "ArtisanalClass(a={}, b={})".format(self.a, self.b)
...
... def __eq__(self, other):
... if other.__class__ is self.__class__:
... return (self.a, self.b) == (other.a, other.b)
... else:
... return NotImplemented
...
... def __ne__(self, other):
... result = self.__eq__(other)
... if result is NotImplemented:
... return NotImplemented
... else:

2.2. Why not. . . 9

attrs, Release 17.1.0

... return not result

...

... def __lt__(self, other):

... if other.__class__ is self.__class__:

... return (self.a, self.b) < (other.a, other.b)

... else:

... return NotImplemented

...

... def __le__(self, other):

... if other.__class__ is self.__class__:

... return (self.a, self.b) <= (other.a, other.b)

... else:

... return NotImplemented

...

... def __gt__(self, other):

... if other.__class__ is self.__class__:

... return (self.a, self.b) > (other.a, other.b)

... else:

... return NotImplemented

...

... def __ge__(self, other):

... if other.__class__ is self.__class__:

... return (self.a, self.b) >= (other.a, other.b)

... else:

... return NotImplemented

...

... def __hash__(self):

... return hash((self.a, self.b))
>>> ArtisanalClass(a=1, b=2)
ArtisanalClass(a=1, b=2)

which is quite a mouthful and it doesn’t even use any of attrs‘s more advanced features like validators or defaults
values. Also: no tests whatsoever. And who will guarantee you, that you don’t accidentally flip the < in your tenth
implementation of __gt__?

If you don’t care and like typing, we’re not gonna stop you. But if you ever get sick of the repetitiveness, attrs will
be waiting for you. :)

. . . characteristic?

characteristic is a very similar and fairly popular project of mine. So why the self-fork? Basically after nearly a year
of usage I ran into annoyances and regretted certain decisions I made early-on to make too many people happy. In the
end, I wasn’t happy using it anymore.

So I learned my lesson and attrs is the result of that.

Reasons For Forking

• Fixing those aforementioned annoyances would introduce more complexity. More complexity means more bugs.

• Certain unused features make other common features complicated or impossible. Prime example is the ability
write your own initializers and make the generated one cooperate with it. The new logic is much simpler
allowing for writing optimal initializers.

• I want it to be possible to gradually move from characteristic to attrs. A peaceful co-existence is
much easier if it’s separate packages altogether.

10 Chapter 2. User’s Guide

https://characteristic.readthedocs.io/

attrs, Release 17.1.0

• My libraries have very strict backward-compatibility policies and it would take years to get rid of those annoy-
ances while they shape the implementation of other features.

• The name is tooo looong.

Main Differences

• The attributes are defined within the class definition such that code analyzers know about their existence.
This is useful in IDEs like PyCharm or linters like PyLint. attrs‘s classes look much more idiomatic than
characteristic‘s. Since it’s useful to use attrs with classes you don’t control (e.g. Django models), a
similar way to characteristic‘s is still supported.

• The names are held shorter and easy to both type and read.

• It is generally more opinionated towards typical uses. This ensures I’ll not wake up in a year hating to use it.

• The generated __init__ methods are faster because of certain features that have been left out intentionally.
The generated code should be as fast as hand-written one.

Examples

Basics

The simplest possible usage would be:

>>> import attr
>>> @attr.s
... class Empty(object):
... pass
>>> Empty()
Empty()
>>> Empty() == Empty()
True
>>> Empty() is Empty()
False

So in other words: attrs is useful even without actual attributes!

But you’ll usually want some data on your classes, so let’s add some:

>>> @attr.s
... class Coordinates(object):
... x = attr.ib()
... y = attr.ib()

By default, all features are added, so you immediately have a fully functional data class with a nice repr string and
comparison methods.

>>> c1 = Coordinates(1, 2)
>>> c1
Coordinates(x=1, y=2)
>>> c2 = Coordinates(x=2, y=1)
>>> c2
Coordinates(x=2, y=1)
>>> c1 == c2
False

2.3. Examples 11

attrs, Release 17.1.0

As shown, the generated __init__ method allows for both positional and keyword arguments.

If playful naming turns you off, attrs comes with serious business aliases:

>>> from attr import attrs, attrib
>>> @attrs
... class SeriousCoordinates(object):
... x = attrib()
... y = attrib()
>>> SeriousCoordinates(1, 2)
SeriousCoordinates(x=1, y=2)
>>> attr.fields(Coordinates) == attr.fields(SeriousCoordinates)
True

For private attributes, attrs will strip the leading underscores for keyword arguments:

>>> @attr.s
... class C(object):
... _x = attr.ib()
>>> C(x=1)
C(_x=1)

If you want to initialize your private attributes yourself, you can do that too:

>>> @attr.s
... class C(object):
... _x = attr.ib(init=False, default=42)
>>> C()
C(_x=42)
>>> C(23)
Traceback (most recent call last):

...
TypeError: __init__() takes exactly 1 argument (2 given)

An additional way (not unlike characteristic) of defining attributes is supported too. This is useful in times
when you want to enhance classes that are not yours (nice __repr__ for Django models anyone?):

>>> class SomethingFromSomeoneElse(object):
... def __init__(self, x):
... self.x = x
>>> SomethingFromSomeoneElse = attr.s(these={"x": attr.ib()},
→˓init=False)(SomethingFromSomeoneElse)
>>> SomethingFromSomeoneElse(1)
SomethingFromSomeoneElse(x=1)

Subclassing is bad for you, but attrs will still do what you’d hope for:

>>> @attr.s
... class A(object):
... a = attr.ib()
... def get_a(self):
... return self.a
>>> @attr.s
... class B(object):
... b = attr.ib()
>>> @attr.s
... class C(B, A):
... c = attr.ib()
>>> i = C(1, 2, 3)

12 Chapter 2. User’s Guide

https://www.youtube.com/watch?v=3MNVP9-hglc

attrs, Release 17.1.0

>>> i
C(a=1, b=2, c=3)
>>> i == C(1, 2, 3)
True
>>> i.get_a()
1

The order of the attributes is defined by the MRO.

In Python 3, classes defined within other classes are detected and reflected in the __repr__. In Python 2 though, it’s
impossible. Therefore @attr.s comes with the repr_ns option to set it manually:

>>> @attr.s
... class C(object):
... @attr.s(repr_ns="C")
... class D(object):
... pass
>>> C.D()
C.D()

repr_ns works on both Python 2 and 3. On Python 3 it overrides the implicit detection.

Converting to Collections Types

When you have a class with data, it often is very convenient to transform that class into a dict (for example if you
want to serialize it to JSON):

>>> attr.asdict(Coordinates(x=1, y=2))
{'x': 1, 'y': 2}

Some fields cannot or should not be transformed. For that, attr.asdict() offers a callback that decides whether
an attribute should be included:

>>> @attr.s
... class UserList(object):
... users = attr.ib()
>>> @attr.s
... class User(object):
... email = attr.ib()
... password = attr.ib()
>>> attr.asdict(UserList([User("jane@doe.invalid", "s33kred"),
... User("joe@doe.invalid", "p4ssw0rd")]),
... filter=lambda attr, value: attr.name != "password")
{'users': [{'email': 'jane@doe.invalid'}, {'email': 'joe@doe.invalid'}]}

For the common case where you want to include or exclude certain types or attributes, attrs ships with a few
helpers:

>>> @attr.s
... class User(object):
... login = attr.ib()
... password = attr.ib()
... id = attr.ib()
>>> attr.asdict(User("jane", "s33kred", 42),
... filter=attr.filters.exclude(attr.fields(User).password, int))
{'login': 'jane'}

2.3. Examples 13

https://www.python.org/download/releases/2.3/mro/
https://www.python.org/dev/peps/pep-3155/
https://docs.python.org/3/library/stdtypes.html#dict

attrs, Release 17.1.0

>>> @attr.s
... class C(object):
... x = attr.ib()
... y = attr.ib()
... z = attr.ib()
>>> attr.asdict(C("foo", "2", 3),
... filter=attr.filters.include(int, attr.fields(C).x))
{'x': 'foo', 'z': 3}

Other times, all you want is a tuple and attrs won’t let you down:

>>> import sqlite3
>>> import attr
>>> @attr.s
... class Foo:
... a = attr.ib()
... b = attr.ib()
>>> foo = Foo(2, 3)
>>> with sqlite3.connect(":memory:") as conn:
... c = conn.cursor()
... c.execute("CREATE TABLE foo (x INTEGER PRIMARY KEY ASC, y)")
... c.execute("INSERT INTO foo VALUES (?, ?)", attr.astuple(foo))
... foo2 = Foo(*c.execute("SELECT x, y FROM foo").fetchone())
<sqlite3.Cursor object at ...>
<sqlite3.Cursor object at ...>
>>> foo == foo2
True

Defaults

Sometimes you want to have default values for your initializer. And sometimes you even want mutable objects as
default values (ever used accidentally def f(arg=[])?). attrs has you covered in both cases:

>>> import collections
>>> @attr.s
... class Connection(object):
... socket = attr.ib()
... @classmethod
... def connect(cls, db_string):
... # ... connect somehow to db_string ...
... return cls(socket=42)
>>> @attr.s
... class ConnectionPool(object):
... db_string = attr.ib()
... pool = attr.ib(default=attr.Factory(collections.deque))
... debug = attr.ib(default=False)
... def get_connection(self):
... try:
... return self.pool.pop()
... except IndexError:
... if self.debug:
... print("New connection!")
... return Connection.connect(self.db_string)
... def free_connection(self, conn):
... if self.debug:
... print("Connection returned!")

14 Chapter 2. User’s Guide

attrs, Release 17.1.0

... self.pool.appendleft(conn)

...
>>> cp = ConnectionPool("postgres://localhost")
>>> cp
ConnectionPool(db_string='postgres://localhost', pool=deque([]), debug=False)
>>> conn = cp.get_connection()
>>> conn
Connection(socket=42)
>>> cp.free_connection(conn)
>>> cp
ConnectionPool(db_string='postgres://localhost', pool=deque([Connection(socket=42)]),
→˓debug=False)

More information on why class methods for constructing objects are awesome can be found in this insightful blog
post.

Default factories can also be set using a decorator. The method receives the partially initialiazed instance which
enables you to base a default value on other attributes:

>>> @attr.s
... class C(object):
... x = attr.ib(default=1)
... y = attr.ib()
... @y.default
... def name_does_not_matter(self):
... return self.x + 1
>>> C()
C(x=1, y=2)

Validators

Although your initializers should do as little as possible (ideally: just initialize your instance according to the argu-
ments!), it can come in handy to do some kind of validation on the arguments.

attrs offers two ways to define validators for each attribute and it’s up to you to choose which one suites better your
style and project.

Decorator

The more straightforward way is by using the attribute’s validator method as a decorator. The method has to
accept three arguments:

1. the instance that’s being validated (aka self),

2. the attribute that it’s validating, and finally

3. the value that is passed for it.

If the value does not pass the validator’s standards, it just raises an appropriate exception.

>>> @attr.s
... class C(object):
... x = attr.ib()
... @x.validator
... def check(self, attribute, value):
... if value > 42:
... raise ValueError("y must be smaller or equal to 42")

2.3. Examples 15

http://as.ynchrono.us/2014/12/asynchronous-object-initialization.html
http://as.ynchrono.us/2014/12/asynchronous-object-initialization.html

attrs, Release 17.1.0

>>> C(42)
C(x=42)
>>> C(43)
Traceback (most recent call last):

...
ValueError: x must be smaller or equal to 42

Callables

If you want to re-use your validators, you should have a look at the validator argument to attr.ib().

It takes either a callable or a list of callables (usually functions) and treats them as validators that receive the same
arguments as with the decorator approach.

Since the validators runs after the instance is initialized, you can refer to other attributes while validating:

>>> def x_smaller_than_y(instance, attribute, value):
... if value >= instance.y:
... raise ValueError("'x' has to be smaller than 'y'!")
>>> @attr.s
... class C(object):
... x = attr.ib(validator=[attr.validators.instance_of(int),
... x_smaller_than_y])
... y = attr.ib()
>>> C(x=3, y=4)
C(x=3, y=4)
>>> C(x=4, y=3)
Traceback (most recent call last):

...
ValueError: 'x' has to be smaller than 'y'!

This example also shows of some syntactic sugar for using the attr.validators.and_() validator: if you pass
a list, all validators have to pass.

attrs won’t intercept your changes to those attributes but you can always call attr.validate() on any instance
to verify that it’s still valid:

>>> i = C(4, 5)
>>> i.x = 5 # works, no magic here
>>> attr.validate(i)
Traceback (most recent call last):

...
ValueError: 'x' has to be smaller than 'y'!

attrs ships with a bunch of validators, make sure to check them out before writing your own:

>>> @attr.s
... class C(object):
... x = attr.ib(validator=attr.validators.instance_of(int))
>>> C(42)
C(x=42)
>>> C("42")
Traceback (most recent call last):

...
TypeError: ("'x' must be <type 'int'> (got '42' that is a <type 'str'>).",
→˓Attribute(name='x', default=NOTHING, factory=NOTHING, validator=<instance_of
→˓validator for type <type 'int'>>), <type 'int'>, '42')

16 Chapter 2. User’s Guide

attrs, Release 17.1.0

Of course you can mix and match the two approaches at your convenience:

>>> @attr.s
... class C(object):
... x = attr.ib(validator=attr.validators.instance_of(int))
... @x.validator
... def fits_byte(self, attribute, value):
... if not 0 < value < 256:
... raise ValueError("value out of bounds")
>>> C(128)
C(x=128)
>>> C("128")
Traceback (most recent call last):

...
TypeError: ("'x' must be <class 'int'> (got '128' that is a <class 'str'>).",
→˓Attribute(name='x', default=NOTHING, validator=[<instance_of validator for type
→˓<class 'int'>>, <function fits_byte at 0x10fd7a0d0>], repr=True, cmp=True,
→˓hash=True, init=True, convert=None, metadata=mappingproxy({})), <class 'int'>, '128
→˓')
>>> C(256)
Traceback (most recent call last):

...
ValueError: value out of bounds

And finally you can disable validators globally:

>>> attr.set_run_validators(False)
>>> C("128")
C(x='128')
>>> attr.set_run_validators(True)
>>> C("128")
Traceback (most recent call last):

...
TypeError: ("'x' must be <class 'int'> (got '128' that is a <class 'str'>).",
→˓Attribute(name='x', default=NOTHING, validator=[<instance_of validator for type
→˓<class 'int'>>, <function fits_byte at 0x10fd7a0d0>], repr=True, cmp=True,
→˓hash=True, init=True, convert=None, metadata=mappingproxy({})), <class 'int'>, '128
→˓')

Conversion

Attributes can have a convert function specified, which will be called with the attribute’s passed-in value to get a
new value to use. This can be useful for doing type-conversions on values that you don’t want to force your callers to
do.

>>> @attr.s
... class C(object):
... x = attr.ib(convert=int)
>>> o = C("1")
>>> o.x
1

Converters are run before validators, so you can use validators to check the final form of the value.

>>> def validate_x(instance, attribute, value):
... if value < 0:
... raise ValueError("x must be be at least 0.")

2.3. Examples 17

attrs, Release 17.1.0

>>> @attr.s
... class C(object):
... x = attr.ib(convert=int, validator=validate_x)
>>> o = C("0")
>>> o.x
0
>>> C("-1")
Traceback (most recent call last):

...
ValueError: x must be be at least 0.

Metadata

All attrs attributes may include arbitrary metadata in the form of a read-only dictionary.

>>> @attr.s
... class C(object):
... x = attr.ib(metadata={'my_metadata': 1})
>>> attr.fields(C).x.metadata
mappingproxy({'my_metadata': 1})
>>> attr.fields(C).x.metadata['my_metadata']
1

Metadata is not used by attrs, and is meant to enable rich functionality in third-party libraries. The metadata
dictionary follows the normal dictionary rules: keys need to be hashable, and both keys and values are recommended
to be immutable.

If you’re the author of a third-party library with attrs integration, please see Extending Metadata.

Slots

By default, instances of classes have a dictionary for attribute storage. This wastes space for objects having very few
data attributes. The space consumption can become significant when creating large numbers of instances.

Normal Python classes can avoid using a separate dictionary for each instance of a class by defining __slots__.
For attrs classes it’s enough to set slots=True:

>>> @attr.s(slots=True)
... class Coordinates(object):
... x = attr.ib()
... y = attr.ib()

Note: attrs slot classes can inherit from other classes just like non-slot classes, but some of the benefits of slot
classes are lost if you do that. If you must inherit from other classes, try to inherit only from other slot classes.

Slot classes are a little different than ordinary, dictionary-backed classes:

• Assigning to a non-existent attribute of an instance will result in an AttributeError being raised. Depend-
ing on your needs, this might be a good thing since it will let you catch typos early. This is not the case if your
class inherits from any non-slot classes.

>>> @attr.s(slots=True)
... class Coordinates(object):

18 Chapter 2. User’s Guide

https://docs.python.org/3.5/reference/datamodel.html#slots

attrs, Release 17.1.0

... x = attr.ib()

... y = attr.ib()

...
>>> c = Coordinates(x=1, y=2)
>>> c.z = 3
Traceback (most recent call last):

...
AttributeError: 'Coordinates' object has no attribute 'z'

• Slot classes cannot share attribute names with their instances, while non-slot classes can. The following behaves
differently if slot classes are used:

>>> @attr.s
... class C(object):
... x = attr.ib()
>>> C.x
Attribute(name='x', default=NOTHING, validator=None, repr=True, cmp=True,
→˓hash=None, init=True, convert=None, metadata=mappingproxy({}))
>>> @attr.s(slots=True)
... class C(object):
... x = attr.ib()
>>> C.x
<member 'x' of 'C' objects>

• Since non-slot classes cannot be turned into slot classes after they have been created, attr.s(..,
slots=True) will replace the class it is applied to with a copy. In almost all cases this isn’t a problem,
but we mention it for the sake of completeness.

• Using pickle with slot classes requires pickle protocol 2 or greater. Python 2 uses protocol 0 by default so
the protocol needs to be specified. Python 3 uses protocol 3 by default. You can support protocol 0 and 1 by
implementing __getstate__ and __setstate__ methods yourself. Those methods are created for frozen
slot classes because they won’t pickle otherwise. Think twice before using pickle though.

All in all, setting slots=True is usually a very good idea.

Immutability

Sometimes you have instances that shouldn’t be changed after instantiation. Immutability is especially popular in
functional programming and is generally a very good thing. If you’d like to enforce it, attrs will try to help:

>>> @attr.s(frozen=True)
... class C(object):
... x = attr.ib()
>>> i = C(1)
>>> i.x = 2
Traceback (most recent call last):

...
attr.exceptions.FrozenInstanceError: can't set attribute
>>> i.x
1

Please note that true immutability is impossible in Python but it will get you 99% there. By themselves, immutable
classes are useful for long-lived objects that should never change; like configurations for example.

In order to use them in regular program flow, you’ll need a way to easily create new instances with changed attributes.
In Clojure that function is called assoc and attrs shamelessly imitates it: attr.evolve():

2.3. Examples 19

https://docs.python.org/3/library/pickle.html#module-pickle
https://docs.python.org/3/library/pickle.html#object.__getstate__
https://docs.python.org/3/library/pickle.html#object.__setstate__
https://www.youtube.com/watch?v=7KnfGDajDQw
https://docs.python.org/3/library/pickle.html#module-pickle
https://clojuredocs.org/clojure.core/assoc

attrs, Release 17.1.0

>>> @attr.s(frozen=True)
... class C(object):
... x = attr.ib()
... y = attr.ib()
>>> i1 = C(1, 2)
>>> i1
C(x=1, y=2)
>>> i2 = attr.evolve(i1, y=3)
>>> i2
C(x=1, y=3)
>>> i1 == i2
False

Other Goodies

Sometimes you may want to create a class programmatically. attrs won’t let you down and gives you attr.
make_class() :

>>> @attr.s
... class C1(object):
... x = attr.ib()
... y = attr.ib()
>>> C2 = attr.make_class("C2", ["x", "y"])
>>> attr.fields(C1) == attr.fields(C2)
True

You can still have power over the attributes if you pass a dictionary of name: attr.ib mappings and can pass
arguments to @attr.s:

>>> C = attr.make_class("C", {"x": attr.ib(default=42),
... "y": attr.ib(default=attr.Factory(list))},
... repr=False)
>>> i = C()
>>> i # no repr added!
<attr._make.C object at ...>
>>> i.x
42
>>> i.y
[]

If you need to dynamically make a class with attr.make_class() and it needs to be a subclass of something else
than object, use the bases argument:

>>> class D(object):
... def __eq__(self, other):
... return True # arbitrary example
>>> C = attr.make_class("C", {}, bases=(D,), cmp=False)
>>> isinstance(C(), D)
True

Sometimes, you want to have your class’s __init__ method do more than just the initialization, validation, etc. that
gets done for you automatically when using @attr.s. To do this, just define a __attrs_post_init__ method
in your class. It will get called at the end of the generated __init__ method.

>>> @attr.s
... class C(object):

20 Chapter 2. User’s Guide

attrs, Release 17.1.0

... x = attr.ib()

... y = attr.ib()

... z = attr.ib(init=False)

...

... def __attrs_post_init__(self):

... self.z = self.x + self.y
>>> obj = C(x=1, y=2)
>>> obj
C(x=1, y=2, z=3)

Finally, you can exclude single attributes from certain methods:

>>> @attr.s
... class C(object):
... user = attr.ib()
... password = attr.ib(repr=False)
>>> C("me", "s3kr3t")
C(user='me')

API

attrsworks by decorating a class using attr.s() and then optionally defining attributes on the class using attr.
ib().

Note: When this documentation speaks about “attrs attributes” it means those attributes that are defined using
attr.ib() in the class body.

What follows is the API explanation, if you’d like a more hands-on introduction, have a look at Examples.

Core

attr.s(these=None, repr_ns=None, repr=True, cmp=True, hash=None, init=True, slots=False,
frozen=False, str=False)

A class decorator that adds dunder-methods according to the specified attributes using attr.ib() or the these
argument.

Parameters

• these (dict of str to attr.ib()) – A dictionary of name to attr.ib() mappings.
This is useful to avoid the definition of your attributes within the class body because you
can’t (e.g. if you want to add __repr__ methods to Django models) or don’t want to.

If these is not None, attrs will not search the class body for attributes.

• repr_ns (str) – When using nested classes, there’s no way in Python 2 to automatically
detect that. Therefore it’s possible to set the namespace explicitly for a more meaningful
repr output.

• repr (bool) – Create a __repr__ method with a human readable represantation of
attrs attributes..

• str (bool) – Create a __str__ method that is identical to __repr__. This is usually
not necessary except for Exceptions.

2.4. API 21

https://wiki.python.org/moin/DunderAlias
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#Exception

attrs, Release 17.1.0

• cmp (bool) – Create __eq__, __ne__, __lt__, __le__, __gt__, and __ge__
methods that compare the class as if it were a tuple of its attrs attributes. But the at-
tributes are only compared, if the type of both classes is identical!

• hash (bool or None) – If None (default), the __hash__ method is generated according
how cmp and frozen are set.

1. If both are True, attrs will generate a __hash__ for you.

2. If cmp is True and frozen is False, __hash__ will be set to None, marking it unhashable
(which it is).

3. If cmp is False, __hash__will be left untouched meaning the __hash__method of the
superclass will be used (if superclass is object, this means it will fall back to id-based
hashing.).

Although not recommended, you can decide for yourself and force attrs to create one
(e.g. if the class is immutable even though you didn’t freeze it programmatically) by passing
True or not. Both of these cases are rather special and should be used carefully.

See the Python documentation and the GitHub issue that led to the default behavior for
more details.

• init (bool) – Create a __init__method that initialiazes the attrs attributes. Leading
underscores are stripped for the argument name. If a __attrs_post_init__ method
exists on the class, it will be called after the class is fully initialized.

• slots (bool) – Create a slots-style class that’s more memory-efficient. See Slots for
further ramifications.

• frozen (bool) – Make instances immutable after initialization. If someone attempts to
modify a frozen instance, attr.exceptions.FrozenInstanceError is raised.

Please note:

1. This is achieved by installing a custom __setattr__ method on your class so you
can’t implement an own one.

2. True immutability is impossible in Python.

3. This does have a minor a runtime performance impact when initializing new instances.
In other words: __init__ is slightly slower with frozen=True.

New in version 16.0.0: slots

New in version 16.1.0: frozen

New in version 16.3.0: str, and support for __attrs_post_init__.

Changed in version 17.1.0: hash supports None as value which is also the default now.

Note: attrs also comes with a serious business alias attr.attrs.

For example:

>>> import attr
>>> @attr.s
... class C(object):
... _private = attr.ib()
>>> C(private=42)
C(_private=42)
>>> class D(object):

22 Chapter 2. User’s Guide

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/reference/datamodel.html#object.__hash__
https://github.com/python-attrs/attrs/issues/136
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3.5/reference/datamodel.html#slots
https://docs.python.org/3/library/functions.html#bool

attrs, Release 17.1.0

... def __init__(self, x):

... self.x = x
>>> D(1)
<D object at ...>
>>> D = attr.s(these={"x": attr.ib()}, init=False)(D)
>>> D(1)
D(x=1)

attr.ib(default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, con-
vert=None, metadata={})

Create a new attribute on a class.

Warning: Does not do anything unless the class is also decorated with attr.s()!

Parameters

• default (Any value.) – A value that is used if an attrs-generated __init__
is used and no value is passed while instantiating or the attribute is excluded using
init=False.

If the value is an instance of Factory , its callable will be used to construct a new value
(useful for mutable datatypes like lists or dicts).

If a default is not set (or set manually to attr.NOTHING), a value must be supplied when
instantiating; otherwise a TypeError will be raised.

• validator (callable or a list of callables.) – callable() that is called by
attrs-generated __init__ methods after the instance has been initialized. They receive
the initialized instance, the Attribute, and the passed value.

The return value is not inspected so the validator has to throw an exception itself.

If a list is passed, its items are treated as validators and must all pass.

Validators can be globally disabled and re-enabled using get_run_validators().

• repr (bool) – Include this attribute in the generated __repr__ method.

• cmp (bool) – Include this attribute in the generated comparison methods (__eq__ et al).

• hash (bool or None) – Include this attribute in the generated __hash__ method. If
None (default), mirror cmp‘s value. This is the correct behavior according the Python spec.
Setting this value to anything else than None is discouraged.

• init (bool) – Include this attribute in the generated __init__ method. It is possible
to set this to False and set a default value. In that case this attributed is unconditionally
initialized with the specified default value or factory.

• convert (callable) – callable() that is called by attrs-generated __init__
methods to convert attribute’s value to the desired format. It is given the passed-in value,
and the returned value will be used as the new value of the attribute. The value is converted
before being passed to the validator, if any.

• metadata – An arbitrary mapping, to be used by third-party components. See Metadata.

Changed in version 17.1.0: validator can be a list now.

Changed in version 17.1.0: hash is None and therefore mirrors cmp by default .

2.4. API 23

https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/functions.html#callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#callable
https://docs.python.org/3/library/functions.html#callable

attrs, Release 17.1.0

Note: attrs also comes with a serious business alias attr.attrib.

The object returned by attr.ib() also has a method called validator() that can be used as a decorator
within the class body to define inline validators (see Validators).

class attr.Attribute(name, _default, _validator, repr, cmp, hash, init, convert=None, metadata=None)
Read-only representation of an attribute.

Attribute name The name of the attribute.

Plus all arguments of attr.ib().

Instances of this class are frequently used for introspection purposes like:

•fields() returns a tuple of them.

•Validators get them passed as the first argument.

Warning: You should never instantiate this class yourself!

>>> import attr
>>> @attr.s
... class C(object):
... x = attr.ib()
>>> C.x
Attribute(name='x', default=NOTHING, validator=None, repr=True, cmp=True,
→˓hash=None, init=True, convert=None, metadata=mappingproxy({}))

attr.make_class(name, attrs, bases=(<class ‘object’>,), **attributes_arguments)
A quick way to create a new class called name with attrs.

Parameters

• name (str) – The name for the new class.

• attrs (list or dict) – A list of names or a dictionary of mappings of names to at-
tributes.

• bases (tuple) – Classes that the new class will subclass.

• attributes_arguments – Passed unmodified to attr.s().

Returns A new class with attrs.

Return type type

New in version 17.1.0: bases

This is handy if you want to programmatically create classes.

For example:

>>> C1 = attr.make_class("C1", ["x", "y"])
>>> C1(1, 2)
C1(x=1, y=2)
>>> C2 = attr.make_class("C2", {"x": attr.ib(default=42),
... "y": attr.ib(default=attr.Factory(list))})
>>> C2()
C2(x=42, y=[])

24 Chapter 2. User’s Guide

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#type

attrs, Release 17.1.0

class attr.Factory(factory, takes_self=False)
Stores a factory callable.

If passed as the default value to attr.ib(), the factory is used to generate a new value.

Parameters

• factory (callable) – A callable that takes either none or exactly one mandatory posi-
tional argument depending on takes_self.

• takes_self (bool) – Pass the partially initialized instance that is being initialized as a
positional argument.

New in version 17.1.0: takes_self

For example:

>>> @attr.s
... class C(object):
... x = attr.ib(default=attr.Factory(list))
... y = attr.ib(default=attr.Factory(
... lambda self: set(self.x),
... takes_self=True)
...)
>>> C()
C(x=[], y=set())
>>> C([1, 2, 3])
C(x=[1, 2, 3], y={1, 2, 3})

exception attr.exceptions.FrozenInstanceError
A frozen/immutable instance has been attempted to be modified.

It mirrors the behavior of namedtuples by using the same error message and subclassing
AttributeError.

New in version 16.1.0.

exception attr.exceptions.AttrsAttributeNotFoundError
An attrs function couldn’t find an attribute that the user asked for.

New in version 16.2.0.

exception attr.exceptions.NotAnAttrsClassError
A non-attrs class has been passed into an attrs function.

New in version 16.2.0.

exception attr.exceptions.DefaultAlreadySetError
A default has been set using attr.ib() and is attempted to be reset using the decorator.

New in version 17.1.0.

Helpers

attrs comes with a bunch of helper methods that make working with it easier:

attr.fields(cls)
Returns the tuple of attrs attributes for a class.

The tuple also allows accessing the fields by their names (see below for examples).

Parameters cls (type) – Class to introspect.

2.4. API 25

https://docs.python.org/3/library/functions.html#callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#AttributeError
https://docs.python.org/3/library/functions.html#type

attrs, Release 17.1.0

Raises

• TypeError – If cls is not a class.

• attr.exceptions.NotAnAttrsClassError – If cls is not an attrs class.

Return type tuple (with name accesors) of attr.Attribute

Changed in version 16.2.0: Returned tuple allows accessing the fields by name.

For example:

>>> @attr.s
... class C(object):
... x = attr.ib()
... y = attr.ib()
>>> attr.fields(C)
(Attribute(name='x', default=NOTHING, validator=None, repr=True, cmp=True,
→˓hash=None, init=True, convert=None, metadata=mappingproxy({})), Attribute(name=
→˓'y', default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True,
→˓ convert=None, metadata=mappingproxy({})))
>>> attr.fields(C)[1]
Attribute(name='y', default=NOTHING, validator=None, repr=True, cmp=True,
→˓hash=None, init=True, convert=None, metadata=mappingproxy({}))
>>> attr.fields(C).y is attr.fields(C)[1]
True

attr.has(cls)
Check whether cls is a class with attrs attributes.

Parameters cls (type) – Class to introspect.

Raises TypeError – If cls is not a class.

Return type bool

For example:

>>> @attr.s
... class C(object):
... pass
>>> attr.has(C)
True
>>> attr.has(object)
False

attr.asdict(inst, recurse=True, filter=None, dict_factory=<class ‘dict’>, re-
tain_collection_types=False)

Return the attrs attribute values of inst as a dict.

Optionally recurse into other attrs-decorated classes.

Parameters

• inst – Instance of an attrs-decorated class.

• recurse (bool) – Recurse into classes that are also attrs-decorated.

• filter (callable) – A callable whose return code deteremines whether an attribute or
element is included (True) or dropped (False). Is called with the attr.Attribute as
the first argument and the value as the second argument.

26 Chapter 2. User’s Guide

https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#callable

attrs, Release 17.1.0

• dict_factory (callable) – A callable to produce dictionaries from. For ex-
ample, to produce ordered dictionaries instead of normal Python dictionaries, pass in
collections.OrderedDict.

• retain_collection_types (bool) – Do not convert to list when encountering an
attribute whose type is tuple or set. Only meaningful if recurse is True.

Return type return type of dict_factory

Raises attr.exceptions.NotAnAttrsClassError – If cls is not an attrs class.

New in version 16.0.0: dict_factory

New in version 16.1.0: retain_collection_types

For example:

>>> @attr.s
... class C(object):
... x = attr.ib()
... y = attr.ib()
>>> attr.asdict(C(1, C(2, 3)))
{'x': 1, 'y': {'x': 2, 'y': 3}}

attr.astuple(inst, recurse=True, filter=None, tuple_factory=<class ‘tuple’>, re-
tain_collection_types=False)

Return the attrs attribute values of inst as a tuple.

Optionally recurse into other attrs-decorated classes.

Parameters

• inst – Instance of an attrs-decorated class.

• recurse (bool) – Recurse into classes that are also attrs-decorated.

• filter (callable) – A callable whose return code determines whether an attribute or
element is included (True) or dropped (False). Is called with the attr.Attribute as
the first argument and the value as the second argument.

• tuple_factory (callable) – A callable to produce tuples from. For example, to
produce lists instead of tuples.

• retain_collection_types (bool) – Do not convert to list or dict when en-
countering an attribute which type is tuple, dict or set. Only meaningful if recurse
is True.

Return type return type of tuple_factory

Raises attr.exceptions.NotAnAttrsClassError – If cls is not an attrs class.

New in version 16.2.0.

For example:

>>> @attr.s
... class C(object):
... x = attr.ib()
... y = attr.ib()
>>> attr.astuple(C(1,2))
(1, 2)

attrs includes some handy helpers for filtering:

2.4. API 27

https://docs.python.org/3/library/functions.html#callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#callable
https://docs.python.org/3/library/functions.html#callable
https://docs.python.org/3/library/functions.html#bool

attrs, Release 17.1.0

attr.filters.include(*what)
Whitelist what.

Parameters what (list of type or attr.Attributes) – What to whitelist.

Return type callable

attr.filters.exclude(*what)
Blacklist what.

Parameters what (list of classes or attr.Attributes.) – What to blacklist.

Return type callable

See Converting to Collections Types for examples.

attr.evolve(inst, **changes)
Create a new instance, based on inst with changes applied.

Parameters

• inst – Instance of a class with attrs attributes.

• changes – Keyword changes in the new copy.

Returns A copy of inst with changes incorporated.

Raises

• TypeError – If attr_name couldn’t be found in the class __init__.

• attr.exceptions.NotAnAttrsClassError – If cls is not an attrs class.

New in version 17.1.0: For example:

>>> @attr.s
... class C(object):
... x = attr.ib()
... y = attr.ib()
>>> i1 = C(1, 2)
>>> i1
C(x=1, y=2)
>>> i2 = attr.evolve(i1, y=3)
>>> i2
C(x=1, y=3)
>>> i1 == i2
False

evolve creates a new instance using __init__. This fact has several implications:

•private attributes should be specified without the leading underscore, just like in __init__.

•attributes with init=False can’t be set with evolve.

•the usual __init__ validators will validate the new values.

attr.validate(inst)
Validate all attributes on inst that have a validator.

Leaves all exceptions through.

Parameters inst – Instance of a class with attrs attributes.

For example:

28 Chapter 2. User’s Guide

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/exceptions.html#TypeError

attrs, Release 17.1.0

>>> @attr.s
... class C(object):
... x = attr.ib(validator=attr.validators.instance_of(int))
>>> i = C(1)
>>> i.x = "1"
>>> attr.validate(i)
Traceback (most recent call last):

...
TypeError: ("'x' must be <type 'int'> (got '1' that is a <type 'str'>).",
→˓Attribute(name='x', default=NOTHING, validator=<instance_of validator for type
→˓<type 'int'>>, repr=True, cmp=True, hash=None, init=True), <type 'int'>, '1')

Validators can be globally disabled if you want to run them only in development and tests but not in production because
you fear their performance impact:

attr.set_run_validators(run)
Set whether or not validators are run. By default, they are run.

attr.get_run_validators()
Return whether or not validators are run.

Validators

attrs comes with some common validators in the attrs.validators module:

attr.validators.instance_of(type)
A validator that raises a TypeError if the initializer is called with a wrong type for this particular attribute
(checks are perfomed using isinstance() therefore it’s also valid to pass a tuple of types).

Parameters type (type or tuple of types) – The type to check for.

Raises TypeError – With a human readable error message, the attribute (of type attr.
Attribute), the expected type, and the value it got.

For example:

>>> @attr.s
... class C(object):
... x = attr.ib(validator=attr.validators.instance_of(int))
>>> C(42)
C(x=42)
>>> C("42")
Traceback (most recent call last):

...
TypeError: ("'x' must be <type 'int'> (got '42' that is a <type 'str'>).",
→˓Attribute(name='x', default=NOTHING, validator=<instance_of validator for type
→˓<type 'int'>>), <type 'int'>, '42')
>>> C(None)
Traceback (most recent call last):

...
TypeError: ("'x' must be <type 'int'> (got None that is a <type 'NoneType'>).",
→˓Attribute(name='x', default=NOTHING, validator=<instance_of validator for type
→˓<type 'int'>>, repr=True, cmp=True, hash=None, init=True), <type 'int'>, None)

attr.validators.in_(options)
A validator that raises a ValueError if the initializer is called with a value that does not belong in the options
provided. The check is performed using value in options.

Parameters options (list, tuple, enum.Enum, ...) – Allowed options.

2.4. API 29

https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/functions.html#isinstance
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/enum.html#enum.Enum

attrs, Release 17.1.0

Raises ValueError – With a human readable error message, the attribute (of type attr.
Attribute), the expected options, and the value it got.

New in version 17.1.0.

For example:

>>> import enum
>>> class State(enum.Enum):
... ON = "on"
... OFF = "off"
>>> @attr.s
... class C(object):
... state = attr.ib(validator=attr.validators.in_(State))
... val = attr.ib(validator=attr.validators.in_([1, 2, 3]))
>>> C(State.ON, 1)
C(state=<State.ON: 'on'>, val=1)
>>> C("on", 1)
Traceback (most recent call last):

...
ValueError: 'state' must be in <enum 'State'> (got 'on')
>>> C(State.ON, 4)
Traceback (most recent call last):

...
ValueError: 'val' must be in [1, 2, 3] (got 4)

attr.validators.provides(interface)
A validator that raises a TypeError if the initializer is called with an object that does not provide the requested
interface (checks are performed using interface.providedBy(value) (see zope.interface).

Parameters interface (zope.interface.Interface) – The interface to check for.

Raises TypeError – With a human readable error message, the attribute (of type attr.
Attribute), the expected interface, and the value it got.

attr.validators.and_(*validators)
A validator that composes multiple validators into one.

When called on a value, it runs all wrapped validators.

Parameters validators (callables) – Arbitrary number of validators.

New in version 17.1.0.

For convenience, it’s also possible to pass a list to attr.ib()‘s validator argument.

Thus the following two statements are equivalent:

x = attr.ib(validator=attr.validators.and_(v1, v2, v3))
x = attr.ib(validator=[v1, v2, v3])

attr.validators.optional(validator)
A validator that makes an attribute optional. An optional attribute is one which can be set to None in addition
to satisfying the requirements of the sub-validator.

Parameters validator (callable or list of callables.) – A validator (or a list of validators) that
is used for non-None values.

New in version 15.1.0.

Changed in version 17.1.0: validator can be a list of validators.

For example:

30 Chapter 2. User’s Guide

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#TypeError
https://zopeinterface.readthedocs.io/en/latest/
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#list

attrs, Release 17.1.0

>>> @attr.s
... class C(object):
... x = attr.ib(validator=attr.validators.optional(attr.validators.instance_
→˓of(int)))
>>> C(42)
C(x=42)
>>> C("42")
Traceback (most recent call last):

...
TypeError: ("'x' must be <type 'int'> (got '42' that is a <type 'str'>).",
→˓Attribute(name='x', default=NOTHING, validator=<instance_of validator for type
→˓<type 'int'>>), <type 'int'>, '42')
>>> C(None)
C(x=None)

Converters

attr.converters.optional(converter)
A converter that allows an attribute to be optional. An optional attribute is one which can be set to None.

Parameters converter (callable) – the converter that is used for non-None values.

New in version 17.1.0.

For example:

>>> @attr.s
... class C(object):
... x = attr.ib(convert=attr.converters.optional(int))
>>> C(None)
C(x=None)
>>> C(42)
C(x=42)

Deprecated APIs

The serious business aliases used to be called attr.attributes and attr.attr. There are no plans to remove
them but they shouldn’t be used in new code.

attr.assoc(inst, **changes)
Copy inst and apply changes.

Parameters

• inst – Instance of a class with attrs attributes.

• changes – Keyword changes in the new copy.

Returns A copy of inst with changes incorporated.

Raises

• attr.exceptions.AttrsAttributeNotFoundError – If attr_name couldn’t be
found on cls.

• attr.exceptions.NotAnAttrsClassError – If cls is not an attrs class.

Deprecated since version 17.1.0: Use evolve() instead.

2.4. API 31

https://docs.python.org/3/library/functions.html#callable

attrs, Release 17.1.0

Extending

Each attrs-decorated class has a __attrs_attrs__ class attribute. It is a tuple of attr.Attribute carrying
meta-data about each attribute.

So it is fairly simple to build your own decorators on top of attrs:

>>> import attr
>>> def print_attrs(cls):
... print(cls.__attrs_attrs__)
>>> @print_attrs
... @attr.s
... class C(object):
... a = attr.ib()
(Attribute(name='a', default=NOTHING, validator=None, repr=True, cmp=True, hash=None,
→˓init=True, convert=None, metadata=mappingproxy({})),)

Warning: The attr.s() decorator must be applied first because it puts __attrs_attrs__ in place! That
means that is has to come after your decorator because:

@a
@b
def f():

pass

is just syntactic sugar for:

def original_f():
pass

f = a(b(original_f))

Metadata

If you’re the author of a third-party library with attrs integration, you may want to take advantage of attribute
metadata.

Here are some tips for effective use of metadata:

• Try making your metadata keys and values immutable. This keeps the entire Attribute instances immutable
too.

• To avoid metadata key collisions, consider exposing your metadata keys from your modules.:

from mylib import MY_METADATA_KEY

@attr.s
class C(object):
x = attr.ib(metadata={MY_METADATA_KEY: 1})

Metadata should be composable, so consider supporting this approach even if you decide implementing your
metadata in one of the following ways.

• Expose attr.ib wrappers for your specific metadata. This is a more graceful approach if your users don’t
require metadata from other libraries.

32 Chapter 2. User’s Guide

https://en.wikipedia.org/wiki/Syntactic_sugar

attrs, Release 17.1.0

>>> MY_TYPE_METADATA = '__my_type_metadata'
>>>
>>> def typed(cls, default=attr.NOTHING, validator=None, repr=True, cmp=True,
→˓hash=None, init=True, convert=None, metadata={}):
... metadata = dict() if not metadata else metadata
... metadata[MY_TYPE_METADATA] = cls
... return attr.ib(default, validator, repr, cmp, hash, init, convert,
→˓metadata)
>>>
>>> @attr.s
... class C(object):
... x = typed(int, default=1, init=False)
>>> attr.fields(C).x.metadata[MY_TYPE_METADATA]
<class 'int'>

How Does It Work?

Boilerplate

attrs certainly isn’t the first library that aims to simplify class definition in Python. But its declarative approach
combined with no runtime overhead lets it stand out.

Once you apply the @attr.s decorator to a class, attrs searches the class object for instances of attr.ibs.
Internally they’re a representation of the data passed into attr.ib along with a counter to preserve the order of the
attributes.

In order to ensure that sub-classing works as you’d expect it to work, attrs also walks the class hierarchy and collects
the attributes of all super-classes. Please note that attrs does not call super() ever. It will write dunder methods
to work on all of those attributes which also has performance benefits due to fewer function calls.

Once attrs knows what attributes it has to work on, it writes the requested dunder methods and attaches them to your
class. To be very clear: if you define a class with a single attribute without a default value, the generated __init__
will look exactly how you’d expect:

>>> import attr, inspect
>>> @attr.s
... class C:
... x = attr.ib()
>>> print(inspect.getsource(C.__init__))
def __init__(self, x):

self.x = x

No magic, no meta programming, no expensive introspection at runtime.

Everything until this point happens exactly once when the class is defined. As soon as a class is done, it’s done. And
it’s just a regular Python class like any other, except for a single __attrs_attrs__ attribute that can be used for
introspection or for writing your own tools and decorators on top of attrs (like attr.asdict()).

And once you start instantiating your classes, attrs is out of your way completely.

This static approach was very much a design goal of attrs and what I strongly believe makes it distinct.

2.6. How Does It Work? 33

attrs, Release 17.1.0

Immutability

In order to give you immutability, attrs will attach a __setattr__ method to your class that raises a attr.
exceptions.FrozenInstanceError whenever anyone tries to set an attribute.

In order to circumvent that ourselves in __init__, attrs uses (an agressively cached) object.
__setattr__() to set your attributes. This is (still) slower than a plain assignment:

$ pyperf timeit --rigorous \
-s "import attr; C = attr.make_class('C', ['x', 'y', 'z'], slots=True)" \
"C(1, 2, 3)"

..
Median +- std dev: 378 ns +- 12 ns

$ pyperf timeit --rigorous \
-s "import attr; C = attr.make_class('C', ['x', 'y', 'z'], slots=True,

→˓frozen=True)" \
"C(1, 2, 3)"

..
Median +- std dev: 676 ns +- 16 ns

So on my notebook the difference is about 300 nanoseconds (1 second is 1,000,000,000 nanoseconds). It’s certainly
something you’ll feel in a hot loop but shouldn’t matter in normal code. Pick what’s more important to you.

Once constructed, frozen instances differ in no way from regular ones except that you cannot change its attributes.

34 Chapter 2. User’s Guide

https://docs.python.org/3/reference/datamodel.html#object.__setattr__
https://docs.python.org/3/reference/datamodel.html#object.__setattr__

CHAPTER 3

Project Information

attrs is released under the MIT license, its documentation lives at Read the Docs, the code on GitHub, and the latest
release on PyPI. It’s rigorously tested on Python 2.7, 3.4+, and PyPy.

If you’d like to contribute you’re most welcome and we’ve written a little guide to get you started!

License and Credits

attrs is licensed under the MIT license. The full license text can be also found in the source code repository.

Credits

attrs is written and maintained by Hynek Schlawack.

The development is kindly supported by Variomedia AG.

A full list of contributors can be found in GitHub’s overview.

It’s the spiritual successor of characteristic and aspires to fix some of it clunkiness and unfortunate decisions. Both
were inspired by Twisted’s FancyEqMixin but both are implemented using class decorators because sub-classing is
bad for you, m’kay?

Backward Compatibility

attrs has a very strong backward compatibility policy that is inspired by the policy of the Twisted framework.

Put simply, you shouldn’t ever be afraid to upgrade attrs if you’re only using its public APIs. If there will ever be
a need to break compatibility, it will be announced in the Changelog and raise a DeprecationWarning for a year
(if possible) before it’s finally really broken.

35

https://choosealicense.com/licenses/mit/
http://www.attrs.org/
https://github.com/python-attrs/attrs
https://pypi.org/project/attrs/
http://www.attrs.org/en/latest/contributing.html
https://choosealicense.com/licenses/mit/
https://github.com/python-attrs/attrs/blob/master/LICENSE
https://hynek.me/
https://www.variomedia.de/
https://github.com/python-attrs/attrs/graphs/contributors
https://characteristic.readthedocs.io/
https://twistedmatrix.com/documents/current/api/twisted.python.util.FancyEqMixin.html
https://www.youtube.com/watch?v=3MNVP9-hglc
https://www.youtube.com/watch?v=3MNVP9-hglc
https://twistedmatrix.com/trac/wiki/CompatibilityPolicy

attrs, Release 17.1.0

Warning: The structure of the attr.Attribute class is exempt from this rule. It will change in the future,
but since it should be considered read-only, that shouldn’t matter.

However if you intend to build extensions on top of attrs you have to anticipate that.

How To Contribute

First off, thank you for considering contributing to attrs! It’s people like you who make it is such a great tool for
everyone.

This document is mainly to help you to get started by codifying tribal knowledge and expectations and make it more
accessible to everyone. But don’t be afraid to open half-finished PRs and ask questions if something is unclear!

Workflow

• No contribution is too small! Please submit as many fixes for typos and grammar bloopers as you can!

• Try to limit each pull request to one change only.

• Always add tests and docs for your code. This is a hard rule; patches with missing tests or documentation can’t
be accepted.

• Make sure your changes pass our CI. You won’t get any feedback until it’s green unless you ask for it.

• Once you’ve addressed review feedback, make sure to bump the pull request with a short note. Maintainers
don’t receive notifications when you push new commits.

• Don’t break backward compatibility.

Code

• Obey PEP 8 and PEP 257. We use the """-on-separate-lines style for docstrings:

def func(x):
"""
Do something.

:param str x: A very important parameter.

:rtype: str
"""

• If you add or change public APIs, tag the docstring using .. versionadded:: 16.0.0 WHAT or ..
versionchanged:: 16.2.0 WHAT.

• Prefer double quotes (") over single quotes (') unless the string contains double quotes itself.

Tests

• Write your asserts as expected == actual to line them up nicely:

36 Chapter 3. Project Information

https://travis-ci.org/python-attrs/attrs/
http://www.attrs.org/en/latest/backward-compatibility.html
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0257/

attrs, Release 17.1.0

x = f()

assert 42 == x.some_attribute
assert "foo" == x._a_private_attribute

• To run the test suite, all you need is a recent tox. It will ensure the test suite runs with all dependencies against
all Python versions just as it will on Travis CI. If you lack some Python versions, you can can always limit the
environments like tox -e py27,py35 (in that case you may want to look into pyenv, which makes it very
easy to install many different Python versions in parallel).

• Write good test docstrings.

• To ensure new features work well with the rest of the system, they should be also added to our Hypothesis
testing strategy which you find in tests/util.py.

Documentation

• Use semantic newlines in reStructuredText files (files ending in .rst):

This is a sentence.
This is another sentence.

• If you start a new section, add two blank lines before and one blank line after the header except if two headers
follow immediately after each other:

Last line of previous section.

Header of New Top Section

Header of New Section
^^^^^^^^^^^^^^^^^^^^^

First line of new section.

• If you add a new feature, demonstrate its awesomeness in the examples page!

• If your change is noteworthy, add an entry to the changelog. Use semantic newlines, and add a link to your pull
request:

- Added ``attr.validators.func()``.
The feature really *is* awesome.
[`#1 <https://github.com/python-attrs/attrs/pull/1>`_]

- ``attr.func()`` now doesn't crash the Large Hadron Collider anymore.
The bug really *was* nasty.
[`#2 <https://github.com/python-attrs/attrs/pull/2>`_]

Local Development Environment

You can (and should) run our test suite using tox however you’ll probably want a more traditional environment too.
We highly recommend to develop using the latest Python 3 release because attrs tries to take advantage of modern
features whenever possible.

3.3. How To Contribute 37

https://tox.readthedocs.io/
https://github.com/pyenv/pyenv
https://jml.io/pages/test-docstrings.html
https://hypothesis.readthedocs.io/
http://rhodesmill.org/brandon/2012/one-sentence-per-line/
http://www.sphinx-doc.org/en/stable/rest.html
https://github.com/python-attrs/attrs/blob/master/docs/examples.rst
https://github.com/python-attrs/attrs/blob/master/CHANGELOG.rst
http://rhodesmill.org/brandon/2012/one-sentence-per-line/
https://tox.readthedocs.io/

attrs, Release 17.1.0

First create a virtual environment. It’s out of scope for this document to list all the ways to manage virtual environ-
ments in Python but if you don’t have already a pet way, take some time to look at tools like pew, virtualfish, and
virtualenvwrapper.

Next get an up to date checkout of the attrs repository:

git checkout git@github.com:python-attrs/attrs.git

Change into the newly created directory and after activating your virtual environment install an editable version of
attrs:

cd attrs
pip install -e .

If you run the virtual environment’s Python and try to import attr it should work!

To run the test suite, you’ll need our development dependencies which can be installed using

pip install -r dev-requirements.txt

At this point

python -m pytest

should work and pass!

Governance

attrs is maintained by team of volunteers that is always open for new members that share our vision of a fast, lean,
and magic-free library that empowers programmers to write better code with less effort. If you’d like to join, just get
a pull request merged and ask to be added in the very same pull request!

The simple rule is that everyone is welcome to review/merge pull requests of others but nobody is allowed to
merge their own code.

Hynek Schlawack acts reluctantly as the BDFL and has the final say over design decisions.

Please note that this project is released with a Contributor Code of Conduct. By participating in this project you agree
to abide by its terms. Please report any harm to Hynek Schlawack in any way you find appropriate.

Thank you for considering contributing to attrs!

Contributor Covenant Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to make
participation in our project and our community a harassment-free experience for everyone, regardless of age, body
size, disability, ethnicity, gender identity and expression, level of experience, nationality, personal appearance, race,
religion, or sexual identity and orientation.

38 Chapter 3. Project Information

https://virtualenv.pypa.io/
https://github.com/berdario/pew
http://virtualfish.readthedocs.io/
http://virtualenvwrapper.readthedocs.io/
https://github.com/python-attrs
https://hynek.me/about/
https://en.wikipedia.org/wiki/Benevolent_dictator_for_life
https://github.com/python-attrs/attrs/blob/master/CODE_OF_CONDUCT.rst
https://hynek.me/about/

attrs, Release 17.1.0

Our Standards

Examples of behavior that contributes to creating a positive environment include:

• Using welcoming and inclusive language

• Being respectful of differing viewpoints and experiences

• Gracefully accepting constructive criticism

• Focusing on what is best for the community

• Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

• The use of sexualized language or imagery and unwelcome sexual attention or advances

• Trolling, insulting/derogatory comments, and personal or political attacks

• Public or private harassment

• Publishing others’ private information, such as a physical or electronic address, without explicit permission

• Other conduct which could reasonably be considered inappropriate in a professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take appro-
priate and fair corrective action in response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits,
issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any
contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the
project or its community. Examples of representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed representative at an online or offline
event. Representation of a project may be further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting the project team at
hs@ox.cx. All complaints will be reviewed and investigated and will result in a response that is deemed necessary and
appropriate to the circumstances. The project team is obligated to maintain confidentiality with regard to the reporter
of an incident. Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good faith may face temporary or permanent
repercussions as determined by other members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the Contributor Covenant, version 1.4, available at http://contributor-covenant.
org/version/1/4.

3.4. Contributor Covenant Code of Conduct 39

mailto:hs@ox.cx
http://contributor-covenant.org
http://contributor-covenant.org/version/1/4
http://contributor-covenant.org/version/1/4

attrs, Release 17.1.0

Changelog

Versions follow CalVer with a strict backwards compatibility policy. The third digit is only for regressions.

17.1.0 (2017-05-16)

To encourage more participation, the project has also been moved into a dedicated GitHub organization and everyone
is most welcome to join!

attrs also has a logo now!

Backward-incompatible changes:

• attrs will set the __hash__() method to None by default now. The way hashes were handled before was
in conflict with Python’s specification. This may break some software although this breakage is most likely
just surfacing of latent bugs. You can always make attrs create the __hash__() method using @attr.
s(hash=True). See #136 for the rationale of this change.

Warning: Please do not upgrade blindly and do test your software! Especially if you use instances as dict
keys or put them into sets!

• Correspondingly, attr.ib‘s hash argument is None by default too and mirrors the cmp argument as it
should.

Deprecations:

• attr.assoc() is now deprecated in favor of attr.evolve() and will stop working in 2018.

Changes:

• Fix default hashing behavior. Now hash mirrors the value of cmp and classes are unhashable by default. #136
#142

• Added attr.evolve() that, given an instance of an attrs class and field changes as keyword arguments,
will instantiate a copy of the given instance with the changes applied. evolve() replaces assoc(), which
is now deprecated. evolve() is significantly faster than assoc(), and requires the class have an initializer
that can take the field values as keyword arguments (like attrs itself can generate). #116 #124 #135

• FrozenInstanceError is now raised when trying to delete an attribute from a frozen class. #118

• Frozen-ness of classes is now inherited. #128

• __attrs_post_init__() is now run if validation is disabled. #130

• Added attr.validators.in_(options) that, given the allowed options, checks whether the attribute
value is in it. This can be used to check constants, enums, mappings, etc. #181

• Added attr.validators.and_() that composes multiple validators into one. #161

• For convenience, the validator argument of @attr.s now can take a list of validators that are wrapped
using and_(). #138

• Accordingly, attr.validators.optional() now can take a list of validators too. #161

40 Chapter 3. Project Information

http://calver.org
https://github.com/python-attrs/
https://docs.python.org/3/reference/datamodel.html#object.__hash__
https://github.com/python-attrs/attrs/issues/136
https://github.com/python-attrs/attrs/issues/136
https://github.com/python-attrs/attrs/issues/142
https://github.com/python-attrs/attrs/issues/116
https://github.com/python-attrs/attrs/pull/124
https://github.com/python-attrs/attrs/pull/135
https://github.com/python-attrs/attrs/pull/118
https://github.com/python-attrs/attrs/pull/128
https://github.com/python-attrs/attrs/pull/130
https://github.com/python-attrs/attrs/pull/181
https://github.com/python-attrs/attrs/issues/161
https://github.com/python-attrs/attrs/issues/138
https://github.com/python-attrs/attrs/issues/161

attrs, Release 17.1.0

• Validators can now be defined conveniently inline by using the attribute as a decorator. Check out the examples
to see it in action! #143

• attr.Factory() now has a takes_self argument that makes the initializer to pass the partially initialized
instance into the factory. In other words you can define attribute defaults based on other attributes. #165

• Default factories can now also be defined inline using decorators. They are always passed the partially initialized
instance. #165

• Conversion can now be made optional using attr.converters.optional(). #105 #173

• attr.make_class() now accepts the keyword argument bases which allows for subclassing. #152

• Metaclasses are now preserved with slots=True. #155

16.3.0 (2016-11-24)

Changes:

• Attributes now can have user-defined metadata which greatly improves attrs‘s extensibility. #96

• Allow for a __attrs_post_init__() method that – if defined – will get called at the end of the attrs-
generated __init__() method. #111

• Added @attr.s(str=True) that will optionally create a __str__() method that is identical to
__repr__(). This is mainly useful with Exceptions and other classes that rely on a useful __str__()
implementation but overwrite the default one through a poor own one. Default Python class behavior is to use
__repr__() as __str__() anyways.

If you tried using attrs with Exceptions and were puzzled by the tracebacks: this option is for you.

• __name__ is not overwritten with __qualname__ for attr.s(slots=True) classes anymore. #99

16.2.0 (2016-09-17)

Changes:

• Added attr.astuple() that – similarly to attr.asdict() – returns the instance as a tuple. #77

• Converts now work with frozen classes. #76

• Instantiation of attrs classes with converters is now significantly faster. #80

• Pickling now works with __slots__ classes. #81

• attr.assoc() now works with __slots__ classes. #84

• The tuple returned by attr.fields() now also allows to access the Attribute instances by name. Yes,
we’ve subclassed tuple so you don’t have to! Therefore attr.fields(C).x is equivalent to the depre-
cated C.x and works with __slots__ classes. #88

3.5. Changelog 41

http://www.attrs.org/en/stable/examples.html#validators
https://github.com/python-attrs/attrs/issues/143
https://github.com/python-attrs/attrs/issues/165
https://github.com/python-attrs/attrs/issues/165
https://github.com/python-attrs/attrs/issues/105
https://github.com/python-attrs/attrs/pull/173
https://github.com/python-attrs/attrs/pull/152
https://github.com/python-attrs/attrs/pull/155
https://github.com/python-attrs/attrs/pull/96
https://github.com/python-attrs/attrs/pull/111
https://github.com/python-attrs/attrs/issues/99
https://github.com/python-attrs/attrs/issues/77
https://github.com/python-attrs/attrs/issues/76
https://github.com/python-attrs/attrs/pull/80
https://github.com/python-attrs/attrs/issues/81
https://github.com/python-attrs/attrs/issues/84
https://github.com/python-attrs/attrs/issues/88

attrs, Release 17.1.0

16.1.0 (2016-08-30)

Backward-incompatible changes:

• All instances where function arguments were called cl have been changed to the more Pythonic cls. Since it
was always the first argument, it’s doubtful anyone ever called those function with in the keyword form. If so,
sorry for any breakage but there’s no practical deprecation path to solve this ugly wart.

Deprecations:

• Accessing Attribute instances on class objects is now deprecated and will stop working in 2017. If you
need introspection please use the __attrs_attrs__ attribute or the attr.fields() function that carry
them too. In the future, the attributes that are defined on the class body and are usually overwritten in your
__init__ method are simply removed after @attr.s has been applied.

This will remove the confusing error message if you write your own __init__ and forget to initialize some
attribute. Instead you will get a straightforward AttributeError. In other words: decorated classes will
work more like plain Python classes which was always attrs‘s goal.

• The serious business aliases attr.attributes and attr.attr have been deprecated in favor of attr.
attrs and attr.attrib which are much more consistent and frankly obvious in hindsight. They will be
purged from documentation immediately but there are no plans to actually remove them.

Changes:

• attr.asdict()‘s dict_factory arguments is now propagated on recursion. #45

• attr.asdict(), attr.has() and attr.fields() are significantly faster. #48 #51

• Add attr.attrs and attr.attrib as a more consistent aliases for attr.s and attr.ib.

• Add frozen option to attr.s that will make instances best-effort immutable. #60

• attr.asdict() now takes retain_collection_types as an argument. If True, it does not convert
attributes of type tuple or set to list. #69

16.0.0 (2016-05-23)

Backward-incompatible changes:

• Python 3.3 and 2.6 aren’t supported anymore. They may work by chance but any effort to keep them working
has ceased.

The last Python 2.6 release was on October 29, 2013 and isn’t supported by the CPython core team anymore.
Major Python packages like Django and Twisted dropped Python 2.6 a while ago already.

Python 3.3 never had a significant user base and wasn’t part of any distribution’s LTS release.

42 Chapter 3. Project Information

https://github.com/python-attrs/attrs/issues/45
https://github.com/python-attrs/attrs/issues/48
https://github.com/python-attrs/attrs/issues/51
https://github.com/python-attrs/attrs/issues/60
https://github.com/python-attrs/attrs/issues/69

attrs, Release 17.1.0

Changes:

• __slots__ have arrived! Classes now can automatically be slots-style (and save your precious memory) just
by passing slots=True. #35

• Allow the case of initializing attributes that are set to init=False. This allows for clean initializer parameter
lists while being able to initialize attributes to default values. #32

• attr.asdict() can now produce arbitrary mappings instead of Python dicts when provided with a
dict_factory argument. #40

• Multiple performance improvements.

15.2.0 (2015-12-08)

Changes:

• Added a convert argument to attr.ib, which allows specifying a function to run on arguments. This allows
for simple type conversions, e.g. with attr.ib(convert=int). #26

• Speed up object creation when attribute validators are used. #28

15.1.0 (2015-08-20)

Changes:

• Added attr.validators.optional() that wraps other validators allowing attributes to be None. #16

• Multi-level inheritance now works. #24

• __repr__() now works with non-redecorated subclasses. #20

15.0.0 (2015-04-15)

Changes:

Initial release.

3.5. Changelog 43

https://docs.python.org/3.5/reference/datamodel.html#slots
https://github.com/python-attrs/attrs/issues/35
https://github.com/python-attrs/attrs/issues/32
https://github.com/python-attrs/attrs/issues/40
https://github.com/python-attrs/attrs/issues/26
https://github.com/python-attrs/attrs/issues/28
https://github.com/python-attrs/attrs/issues/16
https://github.com/python-attrs/attrs/issues/24
https://github.com/python-attrs/attrs/issues/20

attrs, Release 17.1.0

44 Chapter 3. Project Information

CHAPTER 4

Indices and tables

• genindex

• search

45

attrs, Release 17.1.0

46 Chapter 4. Indices and tables

Index

A
and_() (in module attr.validators), 30
asdict() (in module attr), 26
assoc() (in module attr), 31
astuple() (in module attr), 27
Attribute (class in attr), 24
AttrsAttributeNotFoundError, 25

D
DefaultAlreadySetError, 25

E
evolve() (in module attr), 28
exclude() (in module attr.filters), 28

F
Factory (class in attr), 24
fields() (in module attr), 25
FrozenInstanceError, 25

G
get_run_validators() (in module attr), 29

H
has() (in module attr), 26

I
ib() (in module attr), 23
in_() (in module attr.validators), 29
include() (in module attr.filters), 27
instance_of() (in module attr.validators), 29

M
make_class() (in module attr), 24

N
NotAnAttrsClassError, 25

O
optional() (in module attr.converters), 31
optional() (in module attr.validators), 30

P
provides() (in module attr.validators), 30

S
s() (in module attr), 21
set_run_validators() (in module attr), 29

V
validate() (in module attr), 28

47

	Testimonials
	User's Guide
	Overview
	Why not…
	Examples
	API
	Extending
	How Does It Work?

	Project Information
	License and Credits
	Backward Compatibility
	How To Contribute
	Contributor Covenant Code of Conduct
	Changelog

	Indices and tables

