
attrs
Release 18.1.0

May 03, 2018

Contents

1 Getting Started 3

2 Day-to-Day Usage 5

3 Testimonials 7

4 Getting Help 9

5 Project Information 11

6 Full Table of Contents 25

7 Indices and tables 67

i

ii

attrs, Release 18.1.0

Release v18.1.0 (What’s new?).

attrs is the Python package that will bring back the joy of writing classes by relieving you from the drudgery of
implementing object protocols (aka dunder methods).

Its main goal is to help you to write concise and correct software without slowing down your code.

Contents 1

https://nedbatchelder.com/blog/200605/dunder.html

attrs, Release 18.1.0

2 Contents

CHAPTER 1

Getting Started

attrs is a Python-only package hosted on PyPI. The recommended installation method is pip-installing into a vir-
tualenv:

$ pip install attrs

The next three steps should bring you up and running in no time:

• Overview will show you a simple example of attrs in action and introduce you to its philosophy. Afterwards,
you can start writing your own classes, understand what drives attrs’s design, and know what @attr.s and
attr.ib() stand for.

• attrs by Example will give you a comprehensive tour of attrs’s features. After reading, you will know about
our advanced features and how to use them.

• Finally Why not. . . gives you a rundown of potential alternatives and why we think attrs is superior. Yes,
we’ve heard about namedtuples!

• If at any point you get confused by some terminology, please check out our Glossary.

If you need any help while getting started, feel free to use the python-attrs tag on StackOverflow and someone
will surely help you out!

3

https://pypi.org/project/attrs/
https://pip.pypa.io/en/stable/
https://hynek.me/articles/virtualenv-lives/
https://hynek.me/articles/virtualenv-lives/
https://stackoverflow.com/questions/tagged/python-attrs

attrs, Release 18.1.0

4 Chapter 1. Getting Started

CHAPTER 2

Day-to-Day Usage

• Once you’re comfortable with the concepts, our API Reference contains all information you need to use attrs
to its fullest.

• Instance initialization is one of attrs key feature areas. Our goal is to relieve you from writing as much code as
possible. Initialization gives you an overview what attrs has to offer and explains some related philosophies
we believe in.

• If you want to put objects into sets or use them as keys in dictionaries, they have to be hashable. The simplest
way to do that is to use frozen classes, but the topic is more complex than it seems and Hashing will give you a
primer on what to look out for.

• attrs is built for extension from the ground up. Extending will show you the affordances it offers and how to
make it a building block of your own projects.

5

attrs, Release 18.1.0

6 Chapter 2. Day-to-Day Usage

CHAPTER 3

Testimonials

Amber Hawkie Brown, Twisted Release Manager and Computer Owl:

Writing a fully-functional class using attrs takes me less time than writing this testimonial.

Glyph Lefkowitz, creator of Twisted, Automat, and other open source software, in The One Python Library Everyone
Needs:

I’m looking forward to is being able to program in Python-with-attrs everywhere. It exerts a subtle, but
positive, design influence in all the codebases I’ve see it used in.

Kenneth Reitz, author of requests, Python Overlord at Heroku, on paper no less:

attrs—classes for humans. I like it.

Łukasz Langa, prolific CPython core developer and Production Engineer at Facebook:

I’m increasingly digging your attr.ocity. Good job!

7

https://twistedmatrix.com/
https://pypi.python.org/pypi/Automat
https://glyph.twistedmatrix.com/2016/08/attrs.html
https://glyph.twistedmatrix.com/2016/08/attrs.html
http://www.python-requests.org/
https://twitter.com/hynek/status/866817877650751488

attrs, Release 18.1.0

8 Chapter 3. Testimonials

CHAPTER 4

Getting Help

Please use the python-attrs tag on StackOverflow to get help.

Answering questions of your fellow developers is also great way to help the project!

9

https://stackoverflow.com/questions/tagged/python-attrs

attrs, Release 18.1.0

10 Chapter 4. Getting Help

CHAPTER 5

Project Information

attrs is released under the MIT license, its documentation lives at Read the Docs, the code on GitHub, and the latest
release on PyPI. It’s rigorously tested on Python 2.7, 3.4+, and PyPy.

We collect information on third-party extensions in our wiki. Feel free to browse and add your own!

If you’d like to contribute to attrs you’re most welcome and we’ve written a little guide to get you started!

5.1 License and Credits

attrs is licensed under the MIT license. The full license text can be also found in the source code repository.

5.1.1 Credits

attrs is written and maintained by Hynek Schlawack.

The development is kindly supported by Variomedia AG.

A full list of contributors can be found in GitHub’s overview.

It’s the spiritual successor of characteristic and aspires to fix some of it clunkiness and unfortunate decisions. Both
were inspired by Twisted’s FancyEqMixin but both are implemented using class decorators because sub-classing is
bad for you, m’kay?

5.2 Backward Compatibility

attrs has a very strong backward compatibility policy that is inspired by the policy of the Twisted framework.

Put simply, you shouldn’t ever be afraid to upgrade attrs if you’re only using its public APIs. If there will ever be
a need to break compatibility, it will be announced in the Changelog and raise a DeprecationWarning for a year
(if possible) before it’s finally really broken.

11

https://choosealicense.com/licenses/mit/
http://www.attrs.org/
https://github.com/python-attrs/attrs
https://pypi.org/project/attrs/
https://github.com/python-attrs/attrs/wiki/Extensions-to-attrs
http://www.attrs.org/en/latest/contributing.html
https://choosealicense.com/licenses/mit/
https://github.com/python-attrs/attrs/blob/master/LICENSE
https://hynek.me/
https://www.variomedia.de/
https://github.com/python-attrs/attrs/graphs/contributors
https://characteristic.readthedocs.io/
https://twistedmatrix.com/documents/current/api/twisted.python.util.FancyEqMixin.html
https://www.youtube.com/watch?v=3MNVP9-hglc
https://www.youtube.com/watch?v=3MNVP9-hglc
https://twistedmatrix.com/trac/wiki/CompatibilityPolicy

attrs, Release 18.1.0

Warning: The structure of the attr.Attribute class is exempt from this rule. It will change in the future,
but since it should be considered read-only, that shouldn’t matter.

However if you intend to build extensions on top of attrs you have to anticipate that.

5.3 How To Contribute

First off, thank you for considering contributing to attrs! It’s people like you who make it such a great tool for
everyone.

This document intends to make contribution more accessible by codifying tribal knowledge and expectations. Don’t
be afraid to open half-finished PRs, and ask questions if something is unclear!

5.3.1 Support

In case you’d like to help out but don’t want to deal with GitHub, there’s a great opportunity: help your fellow
developers on StackOverflow!

The offical tag is python-attrs and helping out in support frees us up to improve attrs instead!

5.3.2 Workflow

• No contribution is too small! Please submit as many fixes for typos and grammar bloopers as you can!

• Try to limit each pull request to one change only.

• Always add tests and docs for your code. This is a hard rule; patches with missing tests or documentation can’t
be merged.

• Make sure your changes pass our CI. You won’t get any feedback until it’s green unless you ask for it.

• Once you’ve addressed review feedback, make sure to bump the pull request with a short note, so we know
you’re done.

• Don’t break backward compatibility.

5.3.3 Code

• Obey PEP 8 and PEP 257. We use the """-on-separate-lines style for docstrings:

def func(x):
"""
Do something.

:param str x: A very important parameter.

:rtype: str
"""

• If you add or change public APIs, tag the docstring using .. versionadded:: 16.0.0 WHAT or ..
versionchanged:: 16.2.0 WHAT.

• Prefer double quotes (") over single quotes (') unless the string contains double quotes itself.

12 Chapter 5. Project Information

https://stackoverflow.com/questions/tagged/python-attrs
https://travis-ci.org/python-attrs/attrs/
http://www.attrs.org/en/latest/backward-compatibility.html
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0257/

attrs, Release 18.1.0

5.3.4 Tests

• Write your asserts as expected == actual to line them up nicely:

x = f()

assert 42 == x.some_attribute
assert "foo" == x._a_private_attribute

• To run the test suite, all you need is a recent tox. It will ensure the test suite runs with all dependencies against
all Python versions just as it will on Travis CI. If you lack some Python versions, you can can always limit the
environments like tox -e py27,py35 (in that case you may want to look into pyenv, which makes it very
easy to install many different Python versions in parallel).

• Write good test docstrings.

• To ensure new features work well with the rest of the system, they should be also added to our Hypothesis
testing strategy, which is found in tests/strategies.py.

5.3.5 Documentation

• Use semantic newlines in reStructuredText files (files ending in .rst):

This is a sentence.
This is another sentence.

• If you start a new section, add two blank lines before and one blank line after the header, except if two headers
follow immediately after each other:

Last line of previous section.

Header of New Top Section

Header of New Section
^^^^^^^^^^^^^^^^^^^^^

First line of new section.

• If you add a new feature, demonstrate its awesomeness on the examples page!

Changelog

If your change is noteworthy, there needs to be a changelog entry so our users can learn about it!

To avoid merge conflicts, we use the towncrier package to manage our changelog. towncrier uses independent files
for each pull request – so called news fragments – instead of one monolithic changelog file. On release, those news
fragments are compiled into our CHANGELOG.rst.

You don’t need to install towncrier yourself, you just have to abide by a few simple rules:

• For each pull request, add a new file into changelog.d with a filename adhering to the pr#.
(change|deprecation|breaking).rst schema: For example, changelog.d/42.change.rst
for a non-breaking change that is proposed in pull request #42.

• As with other docs, please use semantic newlines within news fragments.

5.3. How To Contribute 13

https://tox.readthedocs.io/
https://github.com/pyenv/pyenv
https://jml.io/pages/test-docstrings.html
https://hypothesis.readthedocs.io/
http://rhodesmill.org/brandon/2012/one-sentence-per-line/
http://www.sphinx-doc.org/en/stable/rest.html
https://github.com/python-attrs/attrs/blob/master/docs/examples.rst
https://pypi.org/project/towncrier
http://rhodesmill.org/brandon/2012/one-sentence-per-line/

attrs, Release 18.1.0

• Wrap symbols like modules, functions, or classes into double backticks so they are rendered in a monospace
font.

• If you mention functions or other callables, add parentheses at the end of their names: attr.func() or
attr.Class.method(). This makes the changelog a lot more readable.

• Prefer simple past tense or constructions with “now”. For example:

– Added attr.validators.func().

– attr.func() now doesn’t crash the Large Hadron Collider anymore.

• If you want to reference multiple issues, copy the news fragment to another filename. towncrier will merge
all news fragments with identical contents into one entry with multiple links to the respective pull requests.

Example entries:

Added ``attr.validators.func()``.
The feature really *is* awesome.

or:

``attr.func()`` now doesn't crash the Large Hadron Collider anymore.
The bug really *was* nasty.

tox -e changelog will render the current changelog to the terminal if you have any doubts.

5.3.6 Local Development Environment

You can (and should) run our test suite using tox. However, you’ll probably want a more traditional environment as
well. We highly recommend to develop using the latest Python 3 release because attrs tries to take advantage of
modern features whenever possible.

First create a virtual environment. It’s out of scope for this document to list all the ways to manage virtual environ-
ments in Python, but if you don’t already have a pet way, take some time to look at tools like pew, virtualfish, and
virtualenvwrapper.

Next, get an up to date checkout of the attrs repository:

$ git checkout git@github.com:python-attrs/attrs.git

Change into the newly created directory and after activating your virtual environment install an editable version of
attrs along with its tests and docs requirements:

$ cd attrs
$ pip install -e .[dev]

At this point,

$ python -m pytest

should work and pass, as should:

$ cd docs
$ make html

The built documentation can then be found in docs/_build/html/.

14 Chapter 5. Project Information

https://tox.readthedocs.io/
https://virtualenv.pypa.io/
https://github.com/berdario/pew
http://virtualfish.readthedocs.io/
http://virtualenvwrapper.readthedocs.io/

attrs, Release 18.1.0

5.3.7 Governance

attrs is maintained by team of volunteers that is always open to new members that share our vision of a fast, lean,
and magic-free library that empowers programmers to write better code with less effort. If you’d like to join, just get
a pull request merged and ask to be added in the very same pull request!

The simple rule is that everyone is welcome to review/merge pull requests of others but nobody is allowed to
merge their own code.

Hynek Schlawack acts reluctantly as the BDFL and has the final say over design decisions.

Please note that this project is released with a Contributor Code of Conduct. By participating in this project you agree
to abide by its terms. Please report any harm to Hynek Schlawack in any way you find appropriate.

Thank you for considering contributing to attrs!

5.4 Contributor Covenant Code of Conduct

5.4.1 Our Pledge

In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to make
participation in our project and our community a harassment-free experience for everyone, regardless of age, body
size, disability, ethnicity, gender identity and expression, level of experience, nationality, personal appearance, race,
religion, or sexual identity and orientation.

5.4.2 Our Standards

Examples of behavior that contributes to creating a positive environment include:

• Using welcoming and inclusive language

• Being respectful of differing viewpoints and experiences

• Gracefully accepting constructive criticism

• Focusing on what is best for the community

• Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

• The use of sexualized language or imagery and unwelcome sexual attention or advances

• Trolling, insulting/derogatory comments, and personal or political attacks

• Public or private harassment

• Publishing others’ private information, such as a physical or electronic address, without explicit permission

• Other conduct which could reasonably be considered inappropriate in a professional setting

5.4. Contributor Covenant Code of Conduct 15

https://github.com/python-attrs
https://hynek.me/about/
https://en.wikipedia.org/wiki/Benevolent_dictator_for_life
https://github.com/python-attrs/attrs/blob/master/.github/CODE_OF_CONDUCT.rst
https://hynek.me/about/

attrs, Release 18.1.0

5.4.3 Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take appro-
priate and fair corrective action in response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits,
issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any
contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful.

5.4.4 Scope

This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the
project or its community. Examples of representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed representative at an online or offline
event. Representation of a project may be further defined and clarified by project maintainers.

5.4.5 Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting the project team at
hs@ox.cx. All complaints will be reviewed and investigated and will result in a response that is deemed necessary and
appropriate to the circumstances. The project team is obligated to maintain confidentiality with regard to the reporter
of an incident. Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good faith may face temporary or permanent
repercussions as determined by other members of the project’s leadership.

5.4.6 Attribution

This Code of Conduct is adapted from the Contributor Covenant, version 1.4, available at <https://www.
contributor-covenant.org/version/1/4/code-of-conduct.html>.

5.5 Changelog

Versions follow CalVer with a strict backwards compatibility policy. The third digit is only for regressions.

5.5.1 18.1.0 (2018-05-03)

Changes

• x=X(); x.cycle = x; repr(x) will no longer raise a RecursionError, and will instead show as
X(x=...).

#95

• attr.ib(factory=f) is now syntactic sugar for the common case of attr.ib(default=attr.
Factory(f)).

#178, #356

16 Chapter 5. Project Information

mailto:hs@ox.cx
https://www.contributor-covenant.org
https://www.contributor-covenant.org/version/1/4/code-of-conduct.html
https://www.contributor-covenant.org/version/1/4/code-of-conduct.html
http://calver.org
https://github.com/python-attrs/attrs/issues/95
https://github.com/python-attrs/attrs/issues/178
https://github.com/python-attrs/attrs/issues/356

attrs, Release 18.1.0

• Added attr.field_dict() to return an ordered dictionary of attrs attributes for a class, whose keys are
the attribute names.

#290, #349

• The order of attributes that are passed into attr.make_class() or the these argument of @attr.s() is
now retained if the dictionary is ordered (i.e. dict on Python 3.6 and later, collections.OrderedDict
otherwise).

Before, the order was always determined by the order in which the attributes have been defined which may not
be desirable when creating classes programatically.

#300, #339, #343

• In slotted classes, __getstate__ and __setstate__ now ignore the __weakref__ attribute.

#311, #326

• Setting the cell type is now completely best effort. This fixes attrs on Jython.

We cannot make any guarantees regarding Jython though, because our test suite cannot run due to dependency
incompatabilities.

#321, #334

• If attr.s is passed a these argument, it will not attempt to remove attributes with the same name from the
class body anymore.

#322, #323

• The hash of attr.NOTHING is now vegan and faster on 32bit Python builds.

#331, #332

• The overhead of instantiating frozen dict classes is virtually eliminated. #336

• Generated __init__ methods now have an __annotations__ attribute derived from the types of the
fields.

#363

• We have restructured the documentation a bit to account for attrs’ growth in scope. Instead of putting every-
thing into the examples page, we have started to extract narrative chapters.

So far, we’ve added chapters on initialization and hashing.

Expect more to come!

#369, #370

5.5.2 17.4.0 (2017-12-30)

Backward-incompatible Changes

• The traversal of MROs when using multiple inheritance was backward: If you defined a class C that subclasses
A and B like C(A, B), attrs would have collected the attributes from B before those of A.

This is now fixed and means that in classes that employ multiple inheritance, the output of __repr__ and the
order of positional arguments in __init__ changes. Due to the nature of this bug, a proper deprecation cycle
was unfortunately impossible.

5.5. Changelog 17

https://github.com/python-attrs/attrs/issues/290
https://github.com/python-attrs/attrs/issues/349
https://github.com/python-attrs/attrs/issues/300
https://github.com/python-attrs/attrs/issues/339
https://github.com/python-attrs/attrs/issues/343
https://github.com/python-attrs/attrs/issues/311
https://github.com/python-attrs/attrs/issues/326
https://github.com/python-attrs/attrs/issues/321
https://github.com/python-attrs/attrs/issues/334
https://github.com/python-attrs/attrs/issues/322
https://github.com/python-attrs/attrs/issues/323
https://github.com/python-attrs/attrs/issues/331
https://github.com/python-attrs/attrs/issues/332
https://github.com/python-attrs/attrs/issues/336
https://github.com/python-attrs/attrs/issues/363
http://www.attrs.org/en/stable/examples.html
http://www.attrs.org/en/stable/init.html
http://www.attrs.org/en/stable/hashing.html
https://github.com/python-attrs/attrs/issues/369
https://github.com/python-attrs/attrs/issues/370

attrs, Release 18.1.0

Generally speaking, it’s advisable to prefer kwargs-based initialization anyways – especially if you employ
multiple inheritance and diamond-shaped hierarchies.

#298, #299, #304

• The __repr__ set by attrs no longer produces an AttributeError when the instance is missing some
of the specified attributes (either through deleting or after using init=False on some attributes).

This can break code that relied on repr(attr_cls_instance) raising AttributeError to check if
any attr-specified members were unset.

If you were using this, you can implement a custom method for checking this:

def has_unset_members(self):
for field in attr.fields(type(self)):

try:
getattr(self, field.name)

except AttributeError:
return True

return False

#308

Deprecations

• The attr.ib(convert=callable) option is now deprecated in favor of attr.
ib(converter=callable).

This is done to achieve consistency with other noun-based arguments like validator.

convert will keep working until at least January 2019 while raising a DeprecationWarning.

#307

Changes

• Generated __hash__ methods now hash the class type along with the attribute values. Until now the hashes
of two classes with the same values were identical which was a bug.

The generated method is also much faster now.

#261, #295, #296

• attr.ib’s metadata argument now defaults to a unique empty dict instance instead of sharing a common
empty dict for all. The singleton empty dict is still enforced.

#280

• ctypes is optional now however if it’s missing, a bare super() will not work in slotted classes. This should
only happen in special environments like Google App Engine.

#284, #286

• The attribute redefinition feature introduced in 17.3.0 now takes into account if an attribute is redefined via
multiple inheritance. In that case, the definition that is closer to the base of the class hierarchy wins.

#285, #287

• Subclasses of auto_attribs=True can be empty now.

#291, #292

18 Chapter 5. Project Information

https://github.com/python-attrs/attrs/issues/298
https://github.com/python-attrs/attrs/issues/299
https://github.com/python-attrs/attrs/issues/304
https://github.com/python-attrs/attrs/issues/308
https://github.com/python-attrs/attrs/issues/307
https://github.com/python-attrs/attrs/issues/261
https://github.com/python-attrs/attrs/issues/295
https://github.com/python-attrs/attrs/issues/296
https://github.com/python-attrs/attrs/issues/280
https://github.com/python-attrs/attrs/issues/284
https://github.com/python-attrs/attrs/issues/286
https://github.com/python-attrs/attrs/issues/285
https://github.com/python-attrs/attrs/issues/287
https://github.com/python-attrs/attrs/issues/291
https://github.com/python-attrs/attrs/issues/292

attrs, Release 18.1.0

• Equality tests are much faster now.

#306

• All generated methods now have correct __module__, __name__, and (on Python 3) __qualname__
attributes.

#309

5.5.3 17.3.0 (2017-11-08)

Backward-incompatible Changes

• Attributes are not defined on the class body anymore.

This means that if you define a class C with an attribute x, the class will not have an attribute x for introspection
anymore. Instead of C.x, use attr.fields(C).x or look at C.__attrs_attrs__. The old behavior
has been deprecated since version 16.1. (#253)

Changes

• super() and __class__ now work with slotted classes on Python 3. (#102, #226, #269, #270, #272)

• Added type argument to attr.ib() and corresponding type attribute to attr.Attribute.

This change paves the way for automatic type checking and serialization (though as of this release attrs does
not make use of it). In Python 3.6 or higher, the value of attr.Attribute.type can alternately be set
using variable type annotations (see PEP 526). (#151, #214, #215, #239)

• The combination of str=True and slots=True now works on Python 2. (#198)

• attr.Factory is hashable again. (#204)

• Subclasses now can overwrite attribute definitions of their superclass.

That means that you can – for example – change the default value for an attribute by redefining it. (#221, #229)

• Added new option auto_attribs to @attr.s that allows to collect annotated fields without setting them
to attr.ib().

Setting a field to an attr.ib() is still possible to supply options like validators. Setting it to any other value
is treated like it was passed as attr.ib(default=value) – passing an instance of attr.Factory also
works as expected. (#262, #277)

• Instances of classes created using attr.make_class() can now be pickled. (#282)

5.5.4 17.2.0 (2017-05-24)

Changes:

• Validators are hashable again. Note that validators may become frozen in the future, pending availability of
no-overhead frozen classes. #192

5.5. Changelog 19

https://github.com/python-attrs/attrs/issues/306
https://github.com/python-attrs/attrs/issues/309
https://github.com/python-attrs/attrs/issues/253
https://github.com/python-attrs/attrs/issues/102
https://github.com/python-attrs/attrs/issues/226
https://github.com/python-attrs/attrs/issues/269
https://github.com/python-attrs/attrs/issues/270
https://github.com/python-attrs/attrs/issues/272
https://www.python.org/dev/peps/pep-0526/
https://github.com/python-attrs/attrs/issues/151
https://github.com/python-attrs/attrs/issues/214
https://github.com/python-attrs/attrs/issues/215
https://github.com/python-attrs/attrs/issues/239
https://github.com/python-attrs/attrs/issues/198
https://github.com/python-attrs/attrs/issues/204
https://github.com/python-attrs/attrs/issues/221
https://github.com/python-attrs/attrs/issues/229
https://github.com/python-attrs/attrs/issues/262
https://github.com/python-attrs/attrs/issues/277
https://github.com/python-attrs/attrs/issues/282
https://github.com/python-attrs/attrs/issues/192

attrs, Release 18.1.0

5.5.5 17.1.0 (2017-05-16)

To encourage more participation, the project has also been moved into a dedicated GitHub organization and everyone
is most welcome to join!

attrs also has a logo now!

Backward-incompatible Changes:

• attrs will set the __hash__() method to None by default now. The way hashes were handled before was
in conflict with Python’s specification. This may break some software although this breakage is most likely
just surfacing of latent bugs. You can always make attrs create the __hash__() method using @attr.
s(hash=True). See #136 for the rationale of this change.

Warning: Please do not upgrade blindly and do test your software! Especially if you use instances as dict
keys or put them into sets!

• Correspondingly, attr.ib’s hash argument is None by default too and mirrors the cmp argument as it
should.

Deprecations:

• attr.assoc() is now deprecated in favor of attr.evolve() and will stop working in 2018.

Changes:

• Fix default hashing behavior. Now hash mirrors the value of cmp and classes are unhashable by default. #136
#142

• Added attr.evolve() that, given an instance of an attrs class and field changes as keyword arguments,
will instantiate a copy of the given instance with the changes applied. evolve() replaces assoc(), which
is now deprecated. evolve() is significantly faster than assoc(), and requires the class have an initializer
that can take the field values as keyword arguments (like attrs itself can generate). #116 #124 #135

• FrozenInstanceError is now raised when trying to delete an attribute from a frozen class. #118

• Frozen-ness of classes is now inherited. #128

• __attrs_post_init__() is now run if validation is disabled. #130

• Added attr.validators.in_(options) that, given the allowed options, checks whether the attribute
value is in it. This can be used to check constants, enums, mappings, etc. #181

• Added attr.validators.and_() that composes multiple validators into one. #161

20 Chapter 5. Project Information

https://github.com/python-attrs/
https://docs.python.org/3/reference/datamodel.html#object.__hash__
https://github.com/python-attrs/attrs/issues/136
https://github.com/python-attrs/attrs/issues/136
https://github.com/python-attrs/attrs/issues/142
https://github.com/python-attrs/attrs/issues/116
https://github.com/python-attrs/attrs/pull/124
https://github.com/python-attrs/attrs/pull/135
https://github.com/python-attrs/attrs/pull/118
https://github.com/python-attrs/attrs/pull/128
https://github.com/python-attrs/attrs/pull/130
https://github.com/python-attrs/attrs/pull/181
https://github.com/python-attrs/attrs/issues/161

attrs, Release 18.1.0

• For convenience, the validator argument of @attr.s now can take a list of validators that are wrapped
using and_(). #138

• Accordingly, attr.validators.optional() now can take a list of validators too. #161

• Validators can now be defined conveniently inline by using the attribute as a decorator. Check out the examples
to see it in action! #143

• attr.Factory() now has a takes_self argument that makes the initializer to pass the partially initialized
instance into the factory. In other words you can define attribute defaults based on other attributes. #165 #189

• Default factories can now also be defined inline using decorators. They are always passed the partially initialized
instance. #165

• Conversion can now be made optional using attr.converters.optional(). #105 #173

• attr.make_class() now accepts the keyword argument bases which allows for subclassing. #152

• Metaclasses are now preserved with slots=True. #155

5.5.6 16.3.0 (2016-11-24)

Changes:

• Attributes now can have user-defined metadata which greatly improves attrs’s extensibility. #96

• Allow for a __attrs_post_init__() method that – if defined – will get called at the end of the attrs-
generated __init__() method. #111

• Added @attr.s(str=True) that will optionally create a __str__() method that is identical to
__repr__(). This is mainly useful with Exceptions and other classes that rely on a useful __str__()
implementation but overwrite the default one through a poor own one. Default Python class behavior is to use
__repr__() as __str__() anyways.

If you tried using attrs with Exceptions and were puzzled by the tracebacks: this option is for you.

• __name__ is not overwritten with __qualname__ for attr.s(slots=True) classes anymore. #99

5.5.7 16.2.0 (2016-09-17)

Changes:

• Added attr.astuple() that – similarly to attr.asdict() – returns the instance as a tuple. #77

• Converts now work with frozen classes. #76

• Instantiation of attrs classes with converters is now significantly faster. #80

• Pickling now works with slotted classes. #81

• attr.assoc() now works with slotted classes. #84

• The tuple returned by attr.fields() now also allows to access the Attribute instances by name. Yes,
we’ve subclassed tuple so you don’t have to! Therefore attr.fields(C).x is equivalent to the depre-
cated C.x and works with slotted classes. #88

5.5. Changelog 21

https://github.com/python-attrs/attrs/issues/138
https://github.com/python-attrs/attrs/issues/161
http://www.attrs.org/en/stable/examples.html#validators
https://github.com/python-attrs/attrs/issues/143
https://github.com/python-attrs/attrs/issues/165
https://github.com/python-attrs/attrs/issues/189
https://github.com/python-attrs/attrs/issues/165
https://github.com/python-attrs/attrs/issues/105
https://github.com/python-attrs/attrs/pull/173
https://github.com/python-attrs/attrs/pull/152
https://github.com/python-attrs/attrs/pull/155
https://github.com/python-attrs/attrs/pull/96
https://github.com/python-attrs/attrs/pull/111
https://github.com/python-attrs/attrs/issues/99
https://github.com/python-attrs/attrs/issues/77
https://github.com/python-attrs/attrs/issues/76
https://github.com/python-attrs/attrs/pull/80
https://github.com/python-attrs/attrs/issues/81
https://github.com/python-attrs/attrs/issues/84
https://github.com/python-attrs/attrs/issues/88

attrs, Release 18.1.0

5.5.8 16.1.0 (2016-08-30)

Backward-incompatible Changes:

• All instances where function arguments were called cl have been changed to the more Pythonic cls. Since it
was always the first argument, it’s doubtful anyone ever called those function with in the keyword form. If so,
sorry for any breakage but there’s no practical deprecation path to solve this ugly wart.

Deprecations:

• Accessing Attribute instances on class objects is now deprecated and will stop working in 2017. If you
need introspection please use the __attrs_attrs__ attribute or the attr.fields() function that carry
them too. In the future, the attributes that are defined on the class body and are usually overwritten in your
__init__ method are simply removed after @attr.s has been applied.

This will remove the confusing error message if you write your own __init__ and forget to initialize some
attribute. Instead you will get a straightforward AttributeError. In other words: decorated classes will
work more like plain Python classes which was always attrs’s goal.

• The serious business aliases attr.attributes and attr.attr have been deprecated in favor of attr.
attrs and attr.attrib which are much more consistent and frankly obvious in hindsight. They will be
purged from documentation immediately but there are no plans to actually remove them.

Changes:

• attr.asdict()’s dict_factory arguments is now propagated on recursion. #45

• attr.asdict(), attr.has() and attr.fields() are significantly faster. #48 #51

• Add attr.attrs and attr.attrib as a more consistent aliases for attr.s and attr.ib.

• Add frozen option to attr.s that will make instances best-effort immutable. #60

• attr.asdict() now takes retain_collection_types as an argument. If True, it does not convert
attributes of type tuple or set to list. #69

5.5.9 16.0.0 (2016-05-23)

Backward-incompatible Changes:

• Python 3.3 and 2.6 aren’t supported anymore. They may work by chance but any effort to keep them working
has ceased.

The last Python 2.6 release was on October 29, 2013 and isn’t supported by the CPython core team anymore.
Major Python packages like Django and Twisted dropped Python 2.6 a while ago already.

Python 3.3 never had a significant user base and wasn’t part of any distribution’s LTS release.

22 Chapter 5. Project Information

https://github.com/python-attrs/attrs/issues/45
https://github.com/python-attrs/attrs/issues/48
https://github.com/python-attrs/attrs/issues/51
https://github.com/python-attrs/attrs/issues/60
https://github.com/python-attrs/attrs/issues/69

attrs, Release 18.1.0

Changes:

• __slots__ have arrived! Classes now can automatically be slotted-style (and save your precious memory)
just by passing slots=True. #35

• Allow the case of initializing attributes that are set to init=False. This allows for clean initializer parameter
lists while being able to initialize attributes to default values. #32

• attr.asdict() can now produce arbitrary mappings instead of Python dicts when provided with a
dict_factory argument. #40

• Multiple performance improvements.

5.5.10 15.2.0 (2015-12-08)

Changes:

• Added a convert argument to attr.ib, which allows specifying a function to run on arguments. This allows
for simple type conversions, e.g. with attr.ib(convert=int). #26

• Speed up object creation when attribute validators are used. #28

5.5.11 15.1.0 (2015-08-20)

Changes:

• Added attr.validators.optional() that wraps other validators allowing attributes to be None. #16

• Multi-level inheritance now works. #24

• __repr__() now works with non-redecorated subclasses. #20

5.5.12 15.0.0 (2015-04-15)

Changes:

Initial release.

5.5. Changelog 23

https://docs.python.org/3/reference/datamodel.html#slots
https://github.com/python-attrs/attrs/issues/35
https://github.com/python-attrs/attrs/issues/32
https://github.com/python-attrs/attrs/issues/40
https://github.com/python-attrs/attrs/issues/26
https://github.com/python-attrs/attrs/issues/28
https://github.com/python-attrs/attrs/issues/16
https://github.com/python-attrs/attrs/issues/24
https://github.com/python-attrs/attrs/issues/20

attrs, Release 18.1.0

24 Chapter 5. Project Information

CHAPTER 6

Full Table of Contents

6.1 Overview

In order to fulfill its ambitious goal of bringing back the joy to writing classes, it gives you a class decorator and a way
to declaratively define the attributes on that class:

>>> import attr

>>> @attr.s
... class SomeClass(object):
... a_number = attr.ib(default=42)
... list_of_numbers = attr.ib(default=attr.Factory(list))
...
... def hard_math(self, another_number):
... return self.a_number + sum(self.list_of_numbers) * another_number

>>> sc = SomeClass(1, [1, 2, 3])
>>> sc
SomeClass(a_number=1, list_of_numbers=[1, 2, 3])

>>> sc.hard_math(3)
19
>>> sc == SomeClass(1, [1, 2, 3])
True
>>> sc != SomeClass(2, [3, 2, 1])
True

>>> attr.asdict(sc)
{'a_number': 1, 'list_of_numbers': [1, 2, 3]}

>>> SomeClass()
SomeClass(a_number=42, list_of_numbers=[])

(continues on next page)

25

attrs, Release 18.1.0

(continued from previous page)

>>> C = attr.make_class("C", ["a", "b"])
>>> C("foo", "bar")
C(a='foo', b='bar')

After declaring your attributes attrs gives you:

• a concise and explicit overview of the class’s attributes,

• a nice human-readable __repr__,

• a complete set of comparison methods,

• an initializer,

• and much more,

without writing dull boilerplate code again and again and without runtime performance penalties.

This gives you the power to use actual classes with actual types in your code instead of confusing tuples or confus-
ingly behaving namedtuples. Which in turn encourages you to write small classes that do one thing well. Never
again violate the single responsibility principle just because implementing __init__ et al is a painful drag.

6.1.1 Philosophy

It’s about regular classes. attrs is for creating well-behaved classes with a type, attributes, methods, and ev-
erything that comes with a class. It can be used for data-only containers like namedtuples or types.
SimpleNamespace but they’re just a sub-genre of what attrs is good for.

The class belongs to the users. You define a class and attrs adds static methods to that class based on the attributes
you declare. The end. It doesn’t add metaclasses. It doesn’t add classes you’ve never heard of to your inheritance
tree. An attrs class in runtime is indistiguishable from a regular class: because it is a regular class with a few
boilerplate-y methods attached.

Be light on API impact. As convenient as it seems at first, attrs will not tack on any methods to your classes
save the dunder ones. Hence all the useful tools that come with attrs live in functions that operate on top of
instances. Since they take an attrs instance as their first argument, you can attach them to your classes with
one line of code.

Performance matters. attrs runtime impact is very close to zero because all the work is done when the class is
defined. Once you’re instantiating it, attrs is out of the picture completely.

No surprises. attrs creates classes that arguably work the way a Python beginner would reasonably expect them to
work. It doesn’t try to guess what you mean because explicit is better than implicit. It doesn’t try to be clever
because software shouldn’t be clever.

Check out How Does It Work? if you’d like to know how it achieves all of the above.

6.1.2 What attrs Is Not

attrs does not invent some kind of magic system that pulls classes out of its hat using meta classes, runtime intro-
spection, and shaky interdependencies.

All attrs does is:

1. take your declaration,

2. write dunder methods based on that information,

3. and attach them to your class.

26 Chapter 6. Full Table of Contents

http://www.attrs.org/en/stable/why.html#namedtuples
http://www.attrs.org/en/stable/why.html#namedtuples
https://www.destroyallsoftware.com/talks/boundaries
https://en.wikipedia.org/wiki/Single_responsibility_principle

attrs, Release 18.1.0

It does nothing dynamic at runtime, hence zero runtime overhead. It’s still your class. Do with it as you please.

6.1.3 On the attr.s and attr.ib Names

The attr.s decorator and the attr.ib function aren’t any obscure abbreviations. They are a concise and highly
readable way to write attrs and attrib with an explicit namespace.

At first, some people have a negative gut reaction to that; resembling the reactions to Python’s significant whitespace.
And as with that, once one gets used to it, the readability and explicitness of that API prevails and delights.

For those who can’t swallow that API at all, attrs comes with serious business aliases: attr.attrs and attr.
attrib.

Therefore, the following class definition is identical to the previous one:

>>> from attr import attrs, attrib, Factory
>>> @attrs
... class SomeClass(object):
... a_number = attrib(default=42)
... list_of_numbers = attrib(default=Factory(list))
...
... def hard_math(self, another_number):
... return self.a_number + sum(self.list_of_numbers) * another_number
>>> SomeClass(1, [1, 2, 3])
SomeClass(a_number=1, list_of_numbers=[1, 2, 3])

Use whichever variant fits your taste better.

6.2 Why not. . .

If you’d like third party’s account why attrs is great, have a look at Glyph’s The One Python Library Everyone
Needs!

6.2.1 . . . tuples?

Readability

What makes more sense while debugging:

Point(x=1, y=2)

or:

(1, 2)

?

Let’s add even more ambiguity:

Customer(id=42, reseller=23, first_name="Jane", last_name="John")

or:

6.2. Why not. . . 27

https://glyph.twistedmatrix.com/2016/08/attrs.html
https://glyph.twistedmatrix.com/2016/08/attrs.html

attrs, Release 18.1.0

(42, 23, "Jane", "John")

?

Why would you want to write customer[2] instead of customer.first_name?

Don’t get me started when you add nesting. If you’ve never run into mysterious tuples you had no idea what the hell
they meant while debugging, you’re much smarter than yours truly.

Using proper classes with names and types makes program code much more readable and comprehensible. Especially
when trying to grok a new piece of software or returning to old code after several months.

Extendability

Imagine you have a function that takes or returns a tuple. Especially if you use tuple unpacking (eg. x, y =
get_point()), adding additional data means that you have to change the invocation of that function everywhere.

Adding an attribute to a class concerns only those who actually care about that attribute.

6.2.2 . . . namedtuples?

collections.namedtuple()s are tuples with names, not classes.1 Since writing classes is tiresome in Python,
every now and then someone discovers all the typing they could save and gets really excited. However that convenience
comes at a price.

The most obvious difference between namedtuples and attrs-based classes is that the latter are type-sensitive:

>>> import attr
>>> C1 = attr.make_class("C1", ["a"])
>>> C2 = attr.make_class("C2", ["a"])
>>> i1 = C1(1)
>>> i2 = C2(1)
>>> i1.a == i2.a
True
>>> i1 == i2
False

. . . while a namedtuple is intentionally behaving like a tuple which means the type of a tuple is ignored:

>>> from collections import namedtuple
>>> NT1 = namedtuple("NT1", "a")
>>> NT2 = namedtuple("NT2", "b")
>>> t1 = NT1(1)
>>> t2 = NT2(1)
>>> t1 == t2 == (1,)
True

Other often surprising behaviors include:

• Since they are a subclass of tuples, namedtuples have a length and are both iterable and indexable. That’s
not what you’d expect from a class and is likely to shadow subtle typo bugs.

• Iterability also implies that it’s easy to accidentally unpack a namedtuple which leads to hard-to-find bugs.3

1 The word is that namedtuples were added to the Python standard library as a way to make tuples in return values more readable. And indeed
that is something you see throughout the standard library.

Looking at what the makers of namedtuples use it for themselves is a good guideline for deciding on your own use cases.
3 attr.astuple() can be used to get that behavior in attrs on explicit demand.

28 Chapter 6. Full Table of Contents

https://arxiv.org/pdf/1304.5257.pdf
https://docs.python.org/3/library/collections.html#collections.namedtuple
https://docs.python.org/3/tutorial/datastructures.html#tuples-and-sequences

attrs, Release 18.1.0

• namedtuples have their methods on your instances whether you like it or not.2

• namedtuples are always immutable. Not only does that mean that you can’t decide for yourself whether
your instances should be immutable or not, it also means that if you want to influence your class’ initialization
(validation? default values?), you have to implement __new__() which is a particularly hacky and error-prone
requirement for a very common problem.4

• To attach methods to a namedtuple you have to subclass it. And if you follow the standard library documen-
tation’s recommendation of:

class Point(namedtuple('Point', ['x', 'y'])):
...

you end up with a class that has two Points in its __mro__: [<class 'point.Point'>, <class
'point.Point'>, <type 'tuple'>, <type 'object'>].

That’s not only confusing, it also has very practical consequences: for example if you create documentation that
includes class hierarchies like Sphinx’s autodoc with show-inheritance. Again: common problem, hacky
solution with confusing fallout.

All these things make namedtuples a particularly poor choice for public APIs because all your objects are irrevo-
cably tainted. With attrs your users won’t notice a difference because it creates regular, well-behaved classes.

Summary

If you want a tuple with names, by all means: go for a namedtuple.5 But if you want a class with methods,
you’re doing yourself a disservice by relying on a pile of hacks that requires you to employ even more hacks as your
requirements expand.

Other than that, attrs also adds nifty features like validators, converters, and (mutable!) default values.

6.2.3 . . . Data Classes?

PEP 557 added Data Classes to Python 3.7 that resemble attrs in many ways.

They are the result of the Python community’s wish to have an easier way to write classes in the standard library
that doesn’t carry the problems of namedtuples. To that end, attrs and its developers were involved in the PEP
process and while we may disagree with some minor decisions that have been made, it’s a fine library and if it stops
you from abusing namedtuples, they are a huge win.

Nevertheless, there are still reasons to prefer attrs over Data Classes whose relevancy depends on your circum-
stances:

• attrs supports all maintream Python versions, including CPython 2.7 and PyPy.

• Data Classes are intentionally less powerful than attrs. There is a long list of features that were sacrificed for
the sake of simplicity and while the most obvious ones are validators, converters, and __slots__, it permeates
throughout all APIs.

On the other hand, Data Classes currently do not offer any significant feature that attrs doesn’t already have.

2 attrs only adds a single attribute: __attrs_attrs__ for introspection. All helpers are functions in the attr package. Since they take
the instance as first argument, you can easily attach them to your classes under a name of your own choice.

4 attrs offers optional immutability through the frozen keyword.
5 Although attrs would serve you just as well! Since both employ the same method of writing and compiling Python code for you, the

performance penalty is negligible at worst and in some cases attrs is even faster if you use slots=True (which is generally a good idea
anyway).

6.2. Why not. . . 29

https://docs.python.org/3/reference/datamodel.html#object.__new__
https://docs.python.org/3/library/stdtypes.html#class.__mro__
http://www.sphinx-doc.org/en/stable/ext/autodoc.html
https://www.python.org/dev/peps/pep-0557/
https://docs.python.org/3.7/whatsnew/3.7.html#pep-557-data-classes
https://mail.python.org/pipermail/python-ideas/2017-May/045618.html

attrs, Release 18.1.0

• attrs can and will move faster. We are not bound to any release schedules and we have a clear deprecation
policy.

One of the reasons to not vendor attrs in the standard library was to not impede attrs’s future developement.

6.2.4 . . . dicts?

Dictionaries are not for fixed fields.

If you have a dict, it maps something to something else. You should be able to add and remove values.

attrs lets you be specific about those expectations; a dictionary does not. It gives you a named entity (the class) in
your code, which lets you explain in other places whether you take a parameter of that class or return a value of that
class.

In other words: if your dict has a fixed and known set of keys, it is an object, not a hash. So if you never iterate over
the keys of a dict, you should use a proper class.

6.2.5 . . . hand-written classes?

While we’re fans of all things artisanal, writing the same nine methods again and again doesn’t qualify. I usually
manage to get some typos inside and there’s simply more code that can break and thus has to be tested.

To bring it into perspective, the equivalent of

>>> @attr.s
... class SmartClass(object):
... a = attr.ib()
... b = attr.ib()
>>> SmartClass(1, 2)
SmartClass(a=1, b=2)

is roughly

>>> class ArtisanalClass(object):
... def __init__(self, a, b):
... self.a = a
... self.b = b
...
... def __repr__(self):
... return "ArtisanalClass(a={}, b={})".format(self.a, self.b)
...
... def __eq__(self, other):
... if other.__class__ is self.__class__:
... return (self.a, self.b) == (other.a, other.b)
... else:
... return NotImplemented
...
... def __ne__(self, other):
... result = self.__eq__(other)
... if result is NotImplemented:
... return NotImplemented
... else:
... return not result
...
... def __lt__(self, other):
... if other.__class__ is self.__class__:

(continues on next page)

30 Chapter 6. Full Table of Contents

https://www.python.org/dev/peps/pep-0557/#why-not-just-use-attrs

attrs, Release 18.1.0

(continued from previous page)

... return (self.a, self.b) < (other.a, other.b)

... else:

... return NotImplemented

...

... def __le__(self, other):

... if other.__class__ is self.__class__:

... return (self.a, self.b) <= (other.a, other.b)

... else:

... return NotImplemented

...

... def __gt__(self, other):

... if other.__class__ is self.__class__:

... return (self.a, self.b) > (other.a, other.b)

... else:

... return NotImplemented

...

... def __ge__(self, other):

... if other.__class__ is self.__class__:

... return (self.a, self.b) >= (other.a, other.b)

... else:

... return NotImplemented

...

... def __hash__(self):

... return hash((self.__class__, self.a, self.b))
>>> ArtisanalClass(a=1, b=2)
ArtisanalClass(a=1, b=2)

which is quite a mouthful and it doesn’t even use any of attrs’s more advanced features like validators or defaults
values. Also: no tests whatsoever. And who will guarantee you, that you don’t accidentally flip the < in your tenth
implementation of __gt__?

It also should be noted that attrs is not an all-or-nothing solution. You can freely choose which features you want
and disable those that you want more control over:

>>> @attr.s(repr=False)
... class SmartClass(object):
... a = attr.ib()
... b = attr.ib()
...
... def __repr__(self):
... return "<SmartClass(a=%d)>" % (self.a,)
>>> SmartClass(1, 2)
<SmartClass(a=1)>

Summary

If you don’t care and like typing, we’re not gonna stop you.

However it takes a lot of bias and determined rationalization to claim that attrs raises the mental burden on a project
given how difficult it is to find the important bits in a hand-written class and how annoying it is to ensure you’ve
copy-pasted your code correctly over all your classes.

In any case, if you ever get sick of the repetitiveness and drowning important code in a sea of boilerplate, attrs will
be waiting for you.

6.2. Why not. . . 31

attrs, Release 18.1.0

6.3 attrs by Example

6.3.1 Basics

The simplest possible usage is:

>>> import attr
>>> @attr.s
... class Empty(object):
... pass
>>> Empty()
Empty()
>>> Empty() == Empty()
True
>>> Empty() is Empty()
False

So in other words: attrs is useful even without actual attributes!

But you’ll usually want some data on your classes, so let’s add some:

>>> @attr.s
... class Coordinates(object):
... x = attr.ib()
... y = attr.ib()

By default, all features are added, so you immediately have a fully functional data class with a nice repr string and
comparison methods.

>>> c1 = Coordinates(1, 2)
>>> c1
Coordinates(x=1, y=2)
>>> c2 = Coordinates(x=2, y=1)
>>> c2
Coordinates(x=2, y=1)
>>> c1 == c2
False

As shown, the generated __init__ method allows for both positional and keyword arguments.

If playful naming turns you off, attrs comes with serious business aliases:

>>> from attr import attrs, attrib
>>> @attrs
... class SeriousCoordinates(object):
... x = attrib()
... y = attrib()
>>> SeriousCoordinates(1, 2)
SeriousCoordinates(x=1, y=2)
>>> attr.fields(Coordinates) == attr.fields(SeriousCoordinates)
True

For private attributes, attrs will strip the leading underscores for keyword arguments:

>>> @attr.s
... class C(object):
... _x = attr.ib()

(continues on next page)

32 Chapter 6. Full Table of Contents

attrs, Release 18.1.0

(continued from previous page)

>>> C(x=1)
C(_x=1)

If you want to initialize your private attributes yourself, you can do that too:

>>> @attr.s
... class C(object):
... _x = attr.ib(init=False, default=42)
>>> C()
C(_x=42)
>>> C(23)
Traceback (most recent call last):

...
TypeError: __init__() takes exactly 1 argument (2 given)

An additional way of defining attributes is supported too. This is useful in times when you want to enhance classes
that are not yours (nice __repr__ for Django models anyone?):

>>> class SomethingFromSomeoneElse(object):
... def __init__(self, x):
... self.x = x
>>> SomethingFromSomeoneElse = attr.s(
... these={
... "x": attr.ib()
... }, init=False)(SomethingFromSomeoneElse)
>>> SomethingFromSomeoneElse(1)
SomethingFromSomeoneElse(x=1)

Subclassing is bad for you, but attrs will still do what you’d hope for:

>>> @attr.s
... class A(object):
... a = attr.ib()
... def get_a(self):
... return self.a
>>> @attr.s
... class B(object):
... b = attr.ib()
>>> @attr.s
... class C(A, B):
... c = attr.ib()
>>> i = C(1, 2, 3)
>>> i
C(a=1, b=2, c=3)
>>> i == C(1, 2, 3)
True
>>> i.get_a()
1

The order of the attributes is defined by the MRO.

In Python 3, classes defined within other classes are detected and reflected in the __repr__. In Python 2 though, it’s
impossible. Therefore @attr.s comes with the repr_ns option to set it manually:

>>> @attr.s
... class C(object):
... @attr.s(repr_ns="C")

(continues on next page)

6.3. attrs by Example 33

https://www.youtube.com/watch?v=3MNVP9-hglc
https://www.python.org/download/releases/2.3/mro/
https://www.python.org/dev/peps/pep-3155/

attrs, Release 18.1.0

(continued from previous page)

... class D(object):

... pass
>>> C.D()
C.D()

repr_ns works on both Python 2 and 3. On Python 3 it overrides the implicit detection.

6.3.2 Converting to Collections Types

When you have a class with data, it often is very convenient to transform that class into a dict (for example if you
want to serialize it to JSON):

>>> attr.asdict(Coordinates(x=1, y=2))
{'x': 1, 'y': 2}

Some fields cannot or should not be transformed. For that, attr.asdict() offers a callback that decides whether
an attribute should be included:

>>> @attr.s
... class UserList(object):
... users = attr.ib()
>>> @attr.s
... class User(object):
... email = attr.ib()
... password = attr.ib()
>>> attr.asdict(UserList([User("jane@doe.invalid", "s33kred"),
... User("joe@doe.invalid", "p4ssw0rd")]),
... filter=lambda attr, value: attr.name != "password")
{'users': [{'email': 'jane@doe.invalid'}, {'email': 'joe@doe.invalid'}]}

For the common case where you want to include or exclude certain types or attributes, attrs ships with a few
helpers:

>>> @attr.s
... class User(object):
... login = attr.ib()
... password = attr.ib()
... id = attr.ib()
>>> attr.asdict(
... User("jane", "s33kred", 42),
... filter=attr.filters.exclude(attr.fields(User).password, int))
{'login': 'jane'}
>>> @attr.s
... class C(object):
... x = attr.ib()
... y = attr.ib()
... z = attr.ib()
>>> attr.asdict(C("foo", "2", 3),
... filter=attr.filters.include(int, attr.fields(C).x))
{'x': 'foo', 'z': 3}

Other times, all you want is a tuple and attrs won’t let you down:

>>> import sqlite3
>>> import attr

(continues on next page)

34 Chapter 6. Full Table of Contents

https://docs.python.org/3/library/stdtypes.html#dict

attrs, Release 18.1.0

(continued from previous page)

>>> @attr.s
... class Foo:
... a = attr.ib()
... b = attr.ib()
>>> foo = Foo(2, 3)
>>> with sqlite3.connect(":memory:") as conn:
... c = conn.cursor()
... c.execute("CREATE TABLE foo (x INTEGER PRIMARY KEY ASC, y)")
... c.execute("INSERT INTO foo VALUES (?, ?)", attr.astuple(foo))
... foo2 = Foo(*c.execute("SELECT x, y FROM foo").fetchone())
<sqlite3.Cursor object at ...>
<sqlite3.Cursor object at ...>
>>> foo == foo2
True

6.3.3 Defaults

Sometimes you want to have default values for your initializer. And sometimes you even want mutable objects as
default values (ever used accidentally def f(arg=[])?). attrs has you covered in both cases:

>>> import collections
>>> @attr.s
... class Connection(object):
... socket = attr.ib()
... @classmethod
... def connect(cls, db_string):
... # ... connect somehow to db_string ...
... return cls(socket=42)
>>> @attr.s
... class ConnectionPool(object):
... db_string = attr.ib()
... pool = attr.ib(default=attr.Factory(collections.deque))
... debug = attr.ib(default=False)
... def get_connection(self):
... try:
... return self.pool.pop()
... except IndexError:
... if self.debug:
... print("New connection!")
... return Connection.connect(self.db_string)
... def free_connection(self, conn):
... if self.debug:
... print("Connection returned!")
... self.pool.appendleft(conn)
...
>>> cp = ConnectionPool("postgres://localhost")
>>> cp
ConnectionPool(db_string='postgres://localhost', pool=deque([]), debug=False)
>>> conn = cp.get_connection()
>>> conn
Connection(socket=42)
>>> cp.free_connection(conn)
>>> cp
ConnectionPool(db_string='postgres://localhost', pool=deque([Connection(socket=42)]),
→˓debug=False)

6.3. attrs by Example 35

attrs, Release 18.1.0

More information on why class methods for constructing objects are awesome can be found in this insightful blog
post.

Default factories can also be set using a decorator. The method receives the partially initialized instance which enables
you to base a default value on other attributes:

>>> @attr.s
... class C(object):
... x = attr.ib(default=1)
... y = attr.ib()
... @y.default
... def name_does_not_matter(self):
... return self.x + 1
>>> C()
C(x=1, y=2)

And since the case of attr.ib(default=attr.Factory(f)) is so common, attrs also comes with syntac-
tic sugar for it:

>>> @attr.s
... class C(object):
... x = attr.ib(factory=list)
>>> C()
C(x=[])

6.3.4 Validators

Although your initializers should do as little as possible (ideally: just initialize your instance according to the argu-
ments!), it can come in handy to do some kind of validation on the arguments.

attrs offers two ways to define validators for each attribute and it’s up to you to choose which one suites better your
style and project.

You can use a decorator:

>>> @attr.s
... class C(object):
... x = attr.ib()
... @x.validator
... def check(self, attribute, value):
... if value > 42:
... raise ValueError("x must be smaller or equal to 42")
>>> C(42)
C(x=42)
>>> C(43)
Traceback (most recent call last):

...
ValueError: x must be smaller or equal to 42

...or a callable...

>>> def x_smaller_than_y(instance, attribute, value):
... if value >= instance.y:
... raise ValueError("'x' has to be smaller than 'y'!")
>>> @attr.s
... class C(object):

(continues on next page)

36 Chapter 6. Full Table of Contents

http://as.ynchrono.us/2014/12/asynchronous-object-initialization.html
http://as.ynchrono.us/2014/12/asynchronous-object-initialization.html

attrs, Release 18.1.0

(continued from previous page)

... x = attr.ib(validator=[attr.validators.instance_of(int),

... x_smaller_than_y])

... y = attr.ib()
>>> C(x=3, y=4)
C(x=3, y=4)
>>> C(x=4, y=3)
Traceback (most recent call last):

...
ValueError: 'x' has to be smaller than 'y'!

. . . or both at once:

>>> @attr.s
... class C(object):
... x = attr.ib(validator=attr.validators.instance_of(int))
... @x.validator
... def fits_byte(self, attribute, value):
... if not 0 <= value < 256:
... raise ValueError("value out of bounds")
>>> C(128)
C(x=128)
>>> C("128")
Traceback (most recent call last):

...
TypeError: ("'x' must be <class 'int'> (got '128' that is a <class 'str'>).",
→˓Attribute(name='x', default=NOTHING, validator=[<instance_of validator for type
→˓<class 'int'>>, <function fits_byte at 0x10fd7a0d0>], repr=True, cmp=True,
→˓hash=True, init=True, metadata=mappingproxy({}), type=None, converter=one), <class
→˓'int'>, '128')
>>> C(256)
Traceback (most recent call last):

...
ValueError: value out of bounds

attrs ships with a bunch of validators, make sure to check them out before writing your own:

>>> @attr.s
... class C(object):
... x = attr.ib(validator=attr.validators.instance_of(int))
>>> C(42)
C(x=42)
>>> C("42")
Traceback (most recent call last):

...
TypeError: ("'x' must be <type 'int'> (got '42' that is a <type 'str'>).",
→˓Attribute(name='x', default=NOTHING, factory=NOTHING, validator=<instance_of
→˓validator for type <type 'int'>>, type=None), <type 'int'>, '42')

Check out Validators for more details.

6.3.5 Conversion

Attributes can have a converter function specified, which will be called with the attribute’s passed-in value to get
a new value to use. This can be useful for doing type-conversions on values that you don’t want to force your callers
to do.

6.3. attrs by Example 37

attrs, Release 18.1.0

>>> @attr.s
... class C(object):
... x = attr.ib(converter=int)
>>> o = C("1")
>>> o.x
1

Check out Converters for more details.

6.3.6 Metadata

All attrs attributes may include arbitrary metadata in the form of a read-only dictionary.

>>> @attr.s
... class C(object):
... x = attr.ib(metadata={'my_metadata': 1})
>>> attr.fields(C).x.metadata
mappingproxy({'my_metadata': 1})
>>> attr.fields(C).x.metadata['my_metadata']
1

Metadata is not used by attrs, and is meant to enable rich functionality in third-party libraries. The metadata
dictionary follows the normal dictionary rules: keys need to be hashable, and both keys and values are recommended
to be immutable.

If you’re the author of a third-party library with attrs integration, please see Extending Metadata.

6.3.7 Types

attrs also allows you to associate a type with an attribute using either the type argument to attr.ib() or – as of
Python 3.6 – using PEP 526-annotations:

>>> @attr.s
... class C:
... x = attr.ib(type=int)
... y: int = attr.ib()
>>> attr.fields(C).x.type
<class 'int'>
>>> attr.fields(C).y.type
<class 'int'>

If you don’t mind annotating all attributes, you can even drop the attr.ib() and assign default values instead:

>>> import typing
>>> @attr.s(auto_attribs=True)
... class AutoC:
... cls_var: typing.ClassVar[int] = 5 # this one is ignored
... l: typing.List[int] = attr.Factory(list)
... x: int = 1
... foo: str = attr.ib(
... default="every attrib needs a type if auto_attribs=True"
...)
... bar: typing.Any = None
>>> attr.fields(AutoC).l.type
typing.List[int]

(continues on next page)

38 Chapter 6. Full Table of Contents

https://www.python.org/dev/peps/pep-0526/

attrs, Release 18.1.0

(continued from previous page)

>>> attr.fields(AutoC).x.type
<class 'int'>
>>> attr.fields(AutoC).foo.type
<class 'str'>
>>> attr.fields(AutoC).bar.type
typing.Any
>>> AutoC()
AutoC(l=[], x=1, foo='every attrib needs a type if auto_attribs=True', bar=None)
>>> AutoC.cls_var
5

The generated __init__ method will have an attribute called __annotations__ that contains this type informa-
tion.

Warning: attrs itself doesn’t have any features that work on top of type metadata yet. However it’s useful for
writing your own validators or serialization frameworks.

6.3.8 Slots

Slotted classes have a bunch of advantages on CPython. Defining __slots__ by hand is tedious, in attrs it’s just
a matter of passing slots=True:

>>> @attr.s(slots=True)
... class Coordinates(object):
... x = attr.ib()
... y = attr.ib()

6.3.9 Immutability

Sometimes you have instances that shouldn’t be changed after instantiation. Immutability is especially popular in
functional programming and is generally a very good thing. If you’d like to enforce it, attrs will try to help:

>>> @attr.s(frozen=True)
... class C(object):
... x = attr.ib()
>>> i = C(1)
>>> i.x = 2
Traceback (most recent call last):

...
attr.exceptions.FrozenInstanceError: can't set attribute
>>> i.x
1

Please note that true immutability is impossible in Python but it will get you 99% there. By themselves, immutable
classes are useful for long-lived objects that should never change; like configurations for example.

In order to use them in regular program flow, you’ll need a way to easily create new instances with changed attributes.
In Clojure that function is called assoc and attrs shamelessly imitates it: attr.evolve():

>>> @attr.s(frozen=True)
... class C(object):
... x = attr.ib()

(continues on next page)

6.3. attrs by Example 39

https://clojuredocs.org/clojure.core/assoc

attrs, Release 18.1.0

(continued from previous page)

... y = attr.ib()
>>> i1 = C(1, 2)
>>> i1
C(x=1, y=2)
>>> i2 = attr.evolve(i1, y=3)
>>> i2
C(x=1, y=3)
>>> i1 == i2
False

6.3.10 Other Goodies

Sometimes you may want to create a class programmatically. attrs won’t let you down and gives you attr.
make_class() :

>>> @attr.s
... class C1(object):
... x = attr.ib()
... y = attr.ib()
>>> C2 = attr.make_class("C2", ["x", "y"])
>>> attr.fields(C1) == attr.fields(C2)
True

You can still have power over the attributes if you pass a dictionary of name: attr.ib mappings and can pass
arguments to @attr.s:

>>> C = attr.make_class("C", {"x": attr.ib(default=42),
... "y": attr.ib(default=attr.Factory(list))},
... repr=False)
>>> i = C()
>>> i # no repr added!
<__main__.C object at ...>
>>> i.x
42
>>> i.y
[]

If you need to dynamically make a class with attr.make_class() and it needs to be a subclass of something else
than object, use the bases argument:

>>> class D(object):
... def __eq__(self, other):
... return True # arbitrary example
>>> C = attr.make_class("C", {}, bases=(D,), cmp=False)
>>> isinstance(C(), D)
True

Sometimes, you want to have your class’s __init__ method do more than just the initialization, validation, etc. that
gets done for you automatically when using @attr.s. To do this, just define a __attrs_post_init__ method
in your class. It will get called at the end of the generated __init__ method.

>>> @attr.s
... class C(object):
... x = attr.ib()

(continues on next page)

40 Chapter 6. Full Table of Contents

attrs, Release 18.1.0

(continued from previous page)

... y = attr.ib()

... z = attr.ib(init=False)

...

... def __attrs_post_init__(self):

... self.z = self.x + self.y
>>> obj = C(x=1, y=2)
>>> obj
C(x=1, y=2, z=3)

Finally, you can exclude single attributes from certain methods:

>>> @attr.s
... class C(object):
... user = attr.ib()
... password = attr.ib(repr=False)
>>> C("me", "s3kr3t")
C(user='me')

6.4 Initialization

In Python, instance intialization happens in the __init__ method. Generally speaking, you should keep as little
logic as possible in it, and you should think about what the class needs and not how it is going to be instantiated.

Passing complex objects into __init__ and then using them to derive data for the class unnecessarily couples your
new class with the old class which makes it harder to test and also will cause problems later.

So assuming you use an ORM and want to extract 2D points from a row object, do not write code like this:

class Point(object):
def __init__(self, database_row):

self.x = database_row.x
self.y = database_row.y

pt = Point(row)

Instead, write a classmethod() that will extract it for you:

@attr.s
class Point(object):

x = attr.ib()
y = attr.ib()

@classmethod
def from_row(cls, row):

return cls(row.x, row.y)

pt = Point.from_row(row)

Now you can instantiate Points without creating fake row objects in your tests and you can have as many smart
creation helpers as you want, in case more data sources appear.

For similar reasons, we strongly discourage from patterns like:

pt = Point(**row.attributes)

6.4. Initialization 41

https://docs.python.org/3/library/functions.html#classmethod

attrs, Release 18.1.0

which couples your classes to the data model. Try to design your classes in a way that is clean and convenient to use –
not based on your database format. The database format can change anytime and you’re stuck with a bad class design
that is hard to change. Embrace classmethods as a filter between reality and what’s best for you to work with.

If you look for object serialization, there’s a bunch of projects listed on our attrs extensions Wiki page. Some of
them even support nested schemas.

6.4.1 Private Attributes

One thing people tend to find confusing is the treatment of private attributes that start with an underscore. attrs
follows the doctrine that there is no such thing as a private argument and strips the underscores from the name when
writing the __init__ method signature:

>>> import inspect, attr
>>> @attr.s
... class C(object):
... _x = attr.ib()
>>> inspect.signature(C.__init__)
<Signature (self, x) -> None>

There really isn’t a right or wrong, it’s a matter of taste. But it’s important to be aware of it because it can lead to
surprising syntax errors:

>>> @attr.s
... class C(object):
... _1 = attr.ib()
Traceback (most recent call last):

...
SyntaxError: invalid syntax

In this case a valid attribute name _1 got transformed into an invalid argument name 1.

6.4.2 Defaults

Sometimes you don’t want to pass all attribute values to a class. And sometimes, certain attributes aren’t even intended
to be passed but you want to allow for customization anyways for easier testing.

This is when default values come into play:

>>> import attr
>>> @attr.s
... class C(object):
... a = attr.ib(default=42)
... b = attr.ib(default=attr.Factory(list))
... c = attr.ib(factory=list) # syntactic sugar for above
... d = attr.ib()
... @d.default
... def _any_name_except_a_name_of_an_attribute(self):
... return {}
>>> C()
C(a=42, b=[], c=[], d={})

It’s important that the decorated method – or any other method or property! – doesn’t have the same name as the
attribute, otherwise it would overwrite the attribute definition.

Please note that as with function and method signatures, default=[] will not do what you may think it might do:

42 Chapter 6. Full Table of Contents

https://github.com/python-attrs/attrs/wiki/Extensions-to-attrs
https://github.com/hynek/characteristic/issues/6

attrs, Release 18.1.0

>>> @attr.s
... class C(object):
... x = attr.ib(default=[])
>>> i = C()
>>> j = C()
>>> i.x.append(42)
>>> j.x
[42]

This is why attrs comes with factory options.

Warning:

Please note that the decorator based defaults have one gotcha: they are executed when the attribute is
set, that means depending on the order of attributes, the self object may not be fully initialized when
they’re called.

Therefore you should use self as little as possible.

Even the smartest of us can get confused by what happens if you pass partially initialized objects
around.

6.4.3 Validators

Another thing that definitely does belong into __init__ is checking the resulting instance for invariants. This is
why attrs has the concept of validators.

Decorator

The most straightforward way is using the attribute’s validator method as a decorator.

The method has to accept three arguments:

1. the instance that’s being validated (aka self),

2. the attribute that it’s validating, and finally

3. the value that is passed for it.

If the value does not pass the validator’s standards, it just raises an appropriate exception.

>>> @attr.s
... class C(object):
... x = attr.ib()
... @x.validator
... def _check_x(self, attribute, value):
... if value > 42:
... raise ValueError("x must be smaller or equal to 42")
>>> C(42)
C(x=42)
>>> C(43)
Traceback (most recent call last):

...
ValueError: x must be smaller or equal to 42

Again, it’s important that the decorated method doesn’t have the same name as the attribute.

6.4. Initialization 43

https://github.com/python-attrs/attrs/issues/289

attrs, Release 18.1.0

Callables

If you want to re-use your validators, you should have a look at the validator argument to attr.ib().

It takes either a callable or a list of callables (usually functions) and treats them as validators that receive the same
arguments as with the decorator approach.

Since the validators runs after the instance is initialized, you can refer to other attributes while validating:

>>> def x_smaller_than_y(instance, attribute, value):
... if value >= instance.y:
... raise ValueError("'x' has to be smaller than 'y'!")
>>> @attr.s
... class C(object):
... x = attr.ib(validator=[attr.validators.instance_of(int),
... x_smaller_than_y])
... y = attr.ib()
>>> C(x=3, y=4)
C(x=3, y=4)
>>> C(x=4, y=3)
Traceback (most recent call last):

...
ValueError: 'x' has to be smaller than 'y'!

This example also shows of some syntactic sugar for using the attr.validators.and_() validator: if you pass
a list, all validators have to pass.

attrs won’t intercept your changes to those attributes but you can always call attr.validate() on any instance
to verify that it’s still valid:

>>> i = C(4, 5)
>>> i.x = 5 # works, no magic here
>>> attr.validate(i)
Traceback (most recent call last):

...
ValueError: 'x' has to be smaller than 'y'!

attrs ships with a bunch of validators, make sure to check them out before writing your own:

>>> @attr.s
... class C(object):
... x = attr.ib(validator=attr.validators.instance_of(int))
>>> C(42)
C(x=42)
>>> C("42")
Traceback (most recent call last):

...
TypeError: ("'x' must be <type 'int'> (got '42' that is a <type 'str'>).",
→˓Attribute(name='x', default=NOTHING, factory=NOTHING, validator=<instance_of
→˓validator for type <type 'int'>>, type=None), <type 'int'>, '42')

Of course you can mix and match the two approaches at your convenience. If you define validators both ways for an
attribute, they are both ran:

>>> @attr.s
... class C(object):
... x = attr.ib(validator=attr.validators.instance_of(int))
... @x.validator

(continues on next page)

44 Chapter 6. Full Table of Contents

attrs, Release 18.1.0

(continued from previous page)

... def fits_byte(self, attribute, value):

... if not 0 <= value < 256:

... raise ValueError("value out of bounds")
>>> C(128)
C(x=128)
>>> C("128")
Traceback (most recent call last):

...
TypeError: ("'x' must be <class 'int'> (got '128' that is a <class 'str'>).",
→˓Attribute(name='x', default=NOTHING, validator=[<instance_of validator for type
→˓<class 'int'>>, <function fits_byte at 0x10fd7a0d0>], repr=True, cmp=True,
→˓hash=True, init=True, metadata=mappingproxy({}), type=None, converter=one), <class
→˓'int'>, '128')
>>> C(256)
Traceback (most recent call last):

...
ValueError: value out of bounds

And finally you can disable validators globally:

>>> attr.set_run_validators(False)
>>> C("128")
C(x='128')
>>> attr.set_run_validators(True)
>>> C("128")
Traceback (most recent call last):

...
TypeError: ("'x' must be <class 'int'> (got '128' that is a <class 'str'>).",
→˓Attribute(name='x', default=NOTHING, validator=[<instance_of validator for type
→˓<class 'int'>>, <function fits_byte at 0x10fd7a0d0>], repr=True, cmp=True,
→˓hash=True, init=True, metadata=mappingproxy({}), type=None, converter=None), <class
→˓'int'>, '128')

6.4.4 Converters

Finally, sometimes you may want to normalize the values coming in. For that attrs comes with converters.

Attributes can have a converter function specified, which will be called with the attribute’s passed-in value to get
a new value to use. This can be useful for doing type-conversions on values that you don’t want to force your callers
to do.

>>> @attr.s
... class C(object):
... x = attr.ib(converter=int)
>>> o = C("1")
>>> o.x
1

Converters are run before validators, so you can use validators to check the final form of the value.

>>> def validate_x(instance, attribute, value):
... if value < 0:
... raise ValueError("x must be at least 0.")
>>> @attr.s
... class C(object):

(continues on next page)

6.4. Initialization 45

attrs, Release 18.1.0

(continued from previous page)

... x = attr.ib(converter=int, validator=validate_x)
>>> o = C("0")
>>> o.x
0
>>> C("-1")
Traceback (most recent call last):

...
ValueError: x must be at least 0.

Arguably, you can abuse converters as one-argument validators:

>>> C("x")
Traceback (most recent call last):

...
ValueError: invalid literal for int() with base 10: 'x'

6.4.5 Post-Init Hook

Generally speaking, the moment you think that you need finer control over how your class is instantiated than what
attrs offers, it’s usually best to use a classmethod factory or to apply the builder pattern.

However, sometimes you need to do that one quick thing after your class is initialized. And for that attrs offers
the __attrs_post_init__ hook that is automatically detected and run after attrs is done initializing your
instance:

>>> @attr.s
... class C(object):
... x = attr.ib()
... y = attr.ib(init=False)
... def __attrs_post_init__(self):
... self.y = self.x + 1
>>> C(1)
C(x=1, y=2)

Please note that you can’t directly set attributes on frozen classes:

>>> @attr.s(frozen=True)
... class FrozenBroken(object):
... x = attr.ib()
... y = attr.ib(init=False)
... def __attrs_post_init__(self):
... self.y = self.x + 1
>>> FrozenBroken(1)
Traceback (most recent call last):

...
attr.exceptions.FrozenInstanceError: can't set attribute

If you need to set attributes on a frozen class, you’ll have to resort to the same trick as attrs and use object.
__setattr__():

>>> @attr.s(frozen=True)
... class Frozen(object):
... x = attr.ib()
... y = attr.ib(init=False)
... def __attrs_post_init__(self):

(continues on next page)

46 Chapter 6. Full Table of Contents

https://en.wikipedia.org/wiki/Builder_pattern
https://docs.python.org/3/reference/datamodel.html#object.__setattr__
https://docs.python.org/3/reference/datamodel.html#object.__setattr__

attrs, Release 18.1.0

(continued from previous page)

... object.__setattr__(self, "y", self.x + 1)
>>> Frozen(1)
Frozen(x=1, y=2)

6.5 Hashing

Warning: The overarching theme is to never set the @attr.s(hash=X) parameter yourself. Leave it at None
which means that attrs will do the right thing for you, depending on the other parameters:

• If you want to make objects hashable by value: use @attr.s(frozen=True).

• If you want hashing and comparison by object identity: use @attr.s(cmp=False)

Setting hash yourself can have unexpected consequences so we recommend to tinker with it only if you know
exactly what you’re doing.

Under certain circumstances, it’s necessary for objects to be hashable. For example if you want to put them into a
set or if you want to use them as keys in a dict.

The hash of an object is an integer that represents the contents of an object. It can be obtained by calling hash() on
an object and is implemented by writing a __hash__ method for your class.

attrs will happily write a __hash__ method you1, however it will not do so by default. Because according to the
definition from the official Python docs, the returned hash has to fullfil certain constraints:

1. Two objects that are equal, must have the same hash. This means that if x == y, it must follow that hash(x)
== hash(y).

By default, Python classes are compared and hashed by their id(). That means that every instance of a class
has a different hash, no matter what attributes it carries.

It follows that the moment you (or attrs) change the way equality is handled by implementing __eq__which
is based on attribute values, this constraint is broken. For that reason Python 3 will make a class that has cus-
tomized equality unhashable. Python 2 on the other hand will happily let you shoot your foot off. Unfortunately
attrs currently mimics Python 2’s behavior for backward compatibility reasons if you set hash=False.

The correct way to achieve hashing by id is to set @attr.s(cmp=False). Setting @attr.
s(hash=False) (that implies cmp=True) is almost certainly a bug.

2. If two object are not equal, their hash should be different.

While this isn’t a requirement from a standpoint of correctness, sets and dicts become less effective if there are
a lot of identical hashes. The worst case is when all objects have the same hash which turns a set into a list.

3. The hash of an object must not change.

If you create a class with @attr.s(frozen=True) this is fullfilled by definition, therefore attrs will
write a __hash__ function for you automatically. You can also force it to write one with hash=True but
then it’s your responsibility to make sure that the object is not mutated.

This point is the reason why mutable structures like lists, dictionaries, or sets aren’t hashable while immutable
ones like tuples or frozensets are: point 1 and 2 require that the hash changes with the contents but point 3
forbids it.

For a more thorough explanation of this topic, please refer to this blog post: Python Hashes and Equality.

1 The hash is computed by hashing a tuple that consists of an unique id for the class plus all attribute values.

6.5. Hashing 47

https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#hash
https://docs.python.org/3/glossary.html#term-hashable
https://docs.python.org/3/library/functions.html#id
https://hynek.me/articles/hashes-and-equality/

attrs, Release 18.1.0

6.6 API Reference

attrsworks by decorating a class using attr.s() and then optionally defining attributes on the class using attr.
ib().

Note: When this documentation speaks about “attrs attributes” it means those attributes that are defined using
attr.ib() in the class body.

What follows is the API explanation, if you’d like a more hands-on introduction, have a look at attrs by Example.

6.6.1 Core

attr.s(these=None, repr_ns=None, repr=True, cmp=True, hash=None, init=True, slots=False,
frozen=False, str=False, auto_attribs=False)

A class decorator that adds dunder-methods according to the specified attributes using attr.ib() or the these
argument.

Parameters

• these (dict of str to attr.ib()) – A dictionary of name to attr.ib() mappings.
This is useful to avoid the definition of your attributes within the class body because you
can’t (e.g. if you want to add __repr__ methods to Django models) or don’t want to.

If these is not None, attrswill not search the class body for attributes and will not remove
any attributes from it.

If these is an ordered dict (dict on Python 3.6+, collections.OrderedDict other-
wise), the order is deduced from the order of the attributes inside these. Otherwise the order
of the definition of the attributes is used.

• repr_ns (str) – When using nested classes, there’s no way in Python 2 to automatically
detect that. Therefore it’s possible to set the namespace explicitly for a more meaningful
repr output.

• repr (bool) – Create a __repr__ method with a human readable representation of
attrs attributes..

• str (bool) – Create a __str__ method that is identical to __repr__. This is usually
not necessary except for Exceptions.

• cmp (bool) – Create __eq__, __ne__, __lt__, __le__, __gt__, and __ge__
methods that compare the class as if it were a tuple of its attrs attributes. But the at-
tributes are only compared, if the type of both classes is identical!

• hash (bool or None) – If None (default), the __hash__ method is generated according
how cmp and frozen are set.

1. If both are True, attrs will generate a __hash__ for you.

2. If cmp is True and frozen is False, __hash__ will be set to None, marking it unhashable
(which it is).

3. If cmp is False, __hash__will be left untouched meaning the __hash__method of the
superclass will be used (if superclass is object, this means it will fall back to id-based
hashing.).

48 Chapter 6. Full Table of Contents

https://wiki.python.org/moin/DunderAlias
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/functions.html#bool

attrs, Release 18.1.0

Although not recommended, you can decide for yourself and force attrs to create one
(e.g. if the class is immutable even though you didn’t freeze it programmatically) by passing
True or not. Both of these cases are rather special and should be used carefully.

See the Python documentation and the GitHub issue that led to the default behavior for
more details.

• init (bool) – Create a __init__ method that initializes the attrs attributes. Leading
underscores are stripped for the argument name. If a __attrs_post_init__ method
exists on the class, it will be called after the class is fully initialized.

• slots (bool) – Create a slots-style class that’s more memory-efficient. See Slots for
further ramifications.

• frozen (bool) – Make instances immutable after initialization. If someone attempts to
modify a frozen instance, attr.exceptions.FrozenInstanceError is raised.

Please note:

1. This is achieved by installing a custom __setattr__ method on your class so you
can’t implement an own one.

2. True immutability is impossible in Python.

3. This does have a minor a runtime performance impact when initializing new instances.
In other words: __init__ is slightly slower with frozen=True.

4. If a class is frozen, you cannot modify self in __attrs_post_init__ or a
self-written __init__. You can circumvent that limitation by using object.
__setattr__(self, "attribute_name", value).

• auto_attribs (bool) – If True, collect PEP 526-annotated attributes (Python 3.6 and
later only) from the class body.

In this case, you must annotate every field. If attrs encounters a field that
is set to an attr.ib() but lacks a type annotation, an attr.exceptions.
UnannotatedAttributeError is raised. Use field_name: typing.Any =
attr.ib(...) if you don’t want to set a type.

If you assign a value to those attributes (e.g. x: int = 42), that value becomes the
default value like if it were passed using attr.ib(default=42). Passing an instance
of Factory also works as expected.

Attributes annotated as typing.ClassVar are ignored.

New in version 16.0.0: slots

New in version 16.1.0: frozen

New in version 16.3.0: str

New in version 16.3.0: Support for __attrs_post_init__.

Changed in version 17.1.0: hash supports None as value which is also the default now.

New in version 17.3.0: auto_attribs

Changed in version 18.1.0: If these is passed, no attributes are deleted from the class body.

Changed in version 18.1.0: If these is ordered, the order is retained.

Note: attrs also comes with a serious business alias attr.attrs.

6.6. API Reference 49

https://docs.python.org/3/reference/datamodel.html#object.__hash__
https://github.com/python-attrs/attrs/issues/136
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/reference/datamodel.html#slots
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://www.python.org/dev/peps/pep-0526/
https://docs.python.org/3/library/typing.html#typing.ClassVar

attrs, Release 18.1.0

For example:

>>> import attr
>>> @attr.s
... class C(object):
... _private = attr.ib()
>>> C(private=42)
C(_private=42)
>>> class D(object):
... def __init__(self, x):
... self.x = x
>>> D(1)
<D object at ...>
>>> D = attr.s(these={"x": attr.ib()}, init=False)(D)
>>> D(1)
D(x=1)

attr.ib(default=NOTHING, validator=None, repr=True, cmp=True, hash=None, init=True, con-
vert=None, metadata=None, type=None, converter=None, factory=None)

Create a new attribute on a class.

Warning: Does not do anything unless the class is also decorated with attr.s()!

Parameters

• default (Any value.) – A value that is used if an attrs-generated __init__
is used and no value is passed while instantiating or the attribute is excluded using
init=False.

If the value is an instance of Factory , its callable will be used to construct a new value
(useful for mutable data types like lists or dicts).

If a default is not set (or set manually to attr.NOTHING), a value must be supplied when
instantiating; otherwise a TypeError will be raised.

The default can also be set using decorator notation as shown below.

• factory (callable) – Syntactic sugar for default=attr.
Factory(callable).

• validator (callable or a list of callables.) – callable() that is called by
attrs-generated __init__ methods after the instance has been initialized. They receive
the initialized instance, the Attribute, and the passed value.

The return value is not inspected so the validator has to throw an exception itself.

If a list is passed, its items are treated as validators and must all pass.

Validators can be globally disabled and re-enabled using get_run_validators().

The validator can also be set using decorator notation as shown below.

• repr (bool) – Include this attribute in the generated __repr__ method.

• cmp (bool) – Include this attribute in the generated comparison methods (__eq__ et al).

• hash (bool or None) – Include this attribute in the generated __hash__ method. If
None (default), mirror cmp’s value. This is the correct behavior according the Python spec.
Setting this value to anything else than None is discouraged.

50 Chapter 6. Full Table of Contents

https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/functions.html#callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

attrs, Release 18.1.0

• init (bool) – Include this attribute in the generated __init__ method. It is possible
to set this to False and set a default value. In that case this attributed is unconditionally
initialized with the specified default value or factory.

• converter (callable) – callable() that is called by attrs-generated
__init__ methods to converter attribute’s value to the desired format. It is given the
passed-in value, and the returned value will be used as the new value of the attribute. The
value is converted before being passed to the validator, if any.

• metadata – An arbitrary mapping, to be used by third-party components. See Metadata.

• type – The type of the attribute. In Python 3.6 or greater, the preferred method to spec-
ify the type is using a variable annotation (see PEP 526). This argument is provided
for backward compatibility. Regardless of the approach used, the type will be stored on
Attribute.type.

New in version 15.2.0: convert

New in version 16.3.0: metadata

Changed in version 17.1.0: validator can be a list now.

Changed in version 17.1.0: hash is None and therefore mirrors cmp by default.

New in version 17.3.0: type

Deprecated since version 17.4.0: convert

New in version 17.4.0: converter as a replacement for the deprecated convert to achieve consistency with other
noun-based arguments.

New in version 18.1.0: factory=f is syntactic sugar for default=attr.Factory(f).

Note: attrs also comes with a serious business alias attr.attrib.

The object returned by attr.ib() also allows for setting the default and the validator using decorators:

>>> @attr.s
... class C(object):
... x = attr.ib()
... y = attr.ib()
... @x.validator
... def name_can_be_anything(self, attribute, value):
... if value < 0:
... raise ValueError("x must be positive")
... @y.default
... def name_does_not_matter(self):
... return self.x + 1
>>> C(1)
C(x=1, y=2)
>>> C(-1)
Traceback (most recent call last):

...
ValueError: x must be positive

class attr.Attribute(name, default, validator, repr, cmp, hash, init, convert=None, metadata=None,
type=None, converter=None)

Read-only representation of an attribute.

Attribute name The name of the attribute.

6.6. API Reference 51

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#callable
https://www.python.org/dev/peps/pep-0526/

attrs, Release 18.1.0

Plus all arguments of attr.ib().

For the version history of the fields, see attr.ib().

Instances of this class are frequently used for introspection purposes like:

• fields() returns a tuple of them.

• Validators get them passed as the first argument.

Warning: You should never instantiate this class yourself!

>>> import attr
>>> @attr.s
... class C(object):
... x = attr.ib()
>>> attr.fields(C).x
Attribute(name='x', default=NOTHING, validator=None, repr=True, cmp=True,
→˓hash=None, init=True, metadata=mappingproxy({}), type=None, converter=None)

attr.make_class(name, attrs, bases=(<class ’object’>,), **attributes_arguments)
A quick way to create a new class called name with attrs.

Parameters

• name (str) – The name for the new class.

• attrs (list or dict) – A list of names or a dictionary of mappings of names to at-
tributes.

If attrs is a list or an ordered dict (dict on Python 3.6+, collections.OrderedDict
otherwise), the order is deduced from the order of the names or attributes inside attrs. Oth-
erwise the order of the definition of the attributes is used.

• bases (tuple) – Classes that the new class will subclass.

• attributes_arguments – Passed unmodified to attr.s().

Returns A new class with attrs.

Return type type

New in version 17.1.0: bases

Changed in version 18.1.0: If attrs is ordered, the order is retained.

This is handy if you want to programmatically create classes.

For example:

>>> C1 = attr.make_class("C1", ["x", "y"])
>>> C1(1, 2)
C1(x=1, y=2)
>>> C2 = attr.make_class("C2", {"x": attr.ib(default=42),
... "y": attr.ib(default=attr.Factory(list))})
>>> C2()
C2(x=42, y=[])

class attr.Factory(factory, takes_self=False)
Stores a factory callable.

If passed as the default value to attr.ib(), the factory is used to generate a new value.

52 Chapter 6. Full Table of Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#type

attrs, Release 18.1.0

Parameters

• factory (callable) – A callable that takes either none or exactly one mandatory posi-
tional argument depending on takes_self.

• takes_self (bool) – Pass the partially initialized instance that is being initialized as a
positional argument.

New in version 17.1.0: takes_self

For example:

>>> @attr.s
... class C(object):
... x = attr.ib(default=attr.Factory(list))
... y = attr.ib(default=attr.Factory(
... lambda self: set(self.x),
... takes_self=True)
...)
>>> C()
C(x=[], y=set())
>>> C([1, 2, 3])
C(x=[1, 2, 3], y={1, 2, 3})

exception attr.exceptions.FrozenInstanceError
A frozen/immutable instance has been attempted to be modified.

It mirrors the behavior of namedtuples by using the same error message and subclassing
AttributeError.

New in version 16.1.0.

exception attr.exceptions.AttrsAttributeNotFoundError
An attrs function couldn’t find an attribute that the user asked for.

New in version 16.2.0.

exception attr.exceptions.NotAnAttrsClassError
A non-attrs class has been passed into an attrs function.

New in version 16.2.0.

exception attr.exceptions.DefaultAlreadySetError
A default has been set using attr.ib() and is attempted to be reset using the decorator.

New in version 17.1.0.

exception attr.exceptions.UnannotatedAttributeError
A class with auto_attribs=True has an attr.ib() without a type annotation.

New in version 17.3.0.

For example:

@attr.s(auto_attribs=True)
class C:

x: int
y = attr.ib() # <- ERROR!

6.6.2 Helpers

attrs comes with a bunch of helper methods that make working with it easier:

6.6. API Reference 53

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#AttributeError

attrs, Release 18.1.0

attr.fields(cls)
Return the tuple of attrs attributes for a class.

The tuple also allows accessing the fields by their names (see below for examples).

Parameters cls (type) – Class to introspect.

Raises

• TypeError – If cls is not a class.

• attr.exceptions.NotAnAttrsClassError – If cls is not an attrs class.

Return type tuple (with name accessors) of attr.Attribute

Changed in version 16.2.0: Returned tuple allows accessing the fields by name.

For example:

>>> @attr.s
... class C(object):
... x = attr.ib()
... y = attr.ib()
>>> attr.fields(C)
(Attribute(name='x', default=NOTHING, validator=None, repr=True, cmp=True,
→˓hash=None, init=True, metadata=mappingproxy({}), type=None, converter=None),
→˓Attribute(name='y', default=NOTHING, validator=None, repr=True, cmp=True,
→˓hash=None, init=True, metadata=mappingproxy({}), type=None, converter=None))
>>> attr.fields(C)[1]
Attribute(name='y', default=NOTHING, validator=None, repr=True, cmp=True,
→˓hash=None, init=True, metadata=mappingproxy({}), type=None, converter=None)
>>> attr.fields(C).y is attr.fields(C)[1]
True

attr.fields_dict(cls)
Return an ordered dictionary of attrs attributes for a class, whose keys are the attribute names.

Parameters cls (type) – Class to introspect.

Raises

• TypeError – If cls is not a class.

• attr.exceptions.NotAnAttrsClassError – If cls is not an attrs class.

Return type an ordered dict where keys are attribute names and values are attr.Attributes.
This will be a dict if it’s naturally ordered like on Python 3.6+ or an OrderedDict other-
wise.

New in version 18.1.0.

For example:

>>> @attr.s
... class C(object):
... x = attr.ib()
... y = attr.ib()
>>> attr.fields_dict(C)
{'x': Attribute(name='x', default=NOTHING, validator=None, repr=True, cmp=True,
→˓hash=None, init=True, metadata=mappingproxy({}), type=None, converter=None), 'y
→˓': Attribute(name='y', default=NOTHING, validator=None, repr=True, cmp=True,
→˓hash=None, init=True, metadata=mappingproxy({}), type=None, converter=None)}
>>> attr.fields_dict(C)['y']

(continues on next page)

54 Chapter 6. Full Table of Contents

https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/collections.html#collections.OrderedDict

attrs, Release 18.1.0

(continued from previous page)

Attribute(name='y', default=NOTHING, validator=None, repr=True, cmp=True,
→˓hash=None, init=True, metadata=mappingproxy({}), type=None, converter=None)
>>> attr.fields_dict(C)['y'] is attr.fields(C).y
True

attr.has(cls)
Check whether cls is a class with attrs attributes.

Parameters cls (type) – Class to introspect.

Raises TypeError – If cls is not a class.

Return type bool

For example:

>>> @attr.s
... class C(object):
... pass
>>> attr.has(C)
True
>>> attr.has(object)
False

attr.asdict(inst, recurse=True, filter=None, dict_factory=<class ’dict’>, re-
tain_collection_types=False)

Return the attrs attribute values of inst as a dict.

Optionally recurse into other attrs-decorated classes.

Parameters

• inst – Instance of an attrs-decorated class.

• recurse (bool) – Recurse into classes that are also attrs-decorated.

• filter (callable) – A callable whose return code determines whether an attribute or
element is included (True) or dropped (False). Is called with the attr.Attribute as
the first argument and the value as the second argument.

• dict_factory (callable) – A callable to produce dictionaries from. For ex-
ample, to produce ordered dictionaries instead of normal Python dictionaries, pass in
collections.OrderedDict.

• retain_collection_types (bool) – Do not convert to list when encountering an
attribute whose type is tuple or set. Only meaningful if recurse is True.

Return type return type of dict_factory

Raises attr.exceptions.NotAnAttrsClassError – If cls is not an attrs class.

New in version 16.0.0: dict_factory

New in version 16.1.0: retain_collection_types

For example:

>>> @attr.s
... class C(object):
... x = attr.ib()
... y = attr.ib()

(continues on next page)

6.6. API Reference 55

https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

attrs, Release 18.1.0

(continued from previous page)

>>> attr.asdict(C(1, C(2, 3)))
{'x': 1, 'y': {'x': 2, 'y': 3}}

attr.astuple(inst, recurse=True, filter=None, tuple_factory=<class ’tuple’>, re-
tain_collection_types=False)

Return the attrs attribute values of inst as a tuple.

Optionally recurse into other attrs-decorated classes.

Parameters

• inst – Instance of an attrs-decorated class.

• recurse (bool) – Recurse into classes that are also attrs-decorated.

• filter (callable) – A callable whose return code determines whether an attribute or
element is included (True) or dropped (False). Is called with the attr.Attribute as
the first argument and the value as the second argument.

• tuple_factory (callable) – A callable to produce tuples from. For example, to
produce lists instead of tuples.

• retain_collection_types (bool) – Do not convert to list or dict when en-
countering an attribute which type is tuple, dict or set. Only meaningful if recurse
is True.

Return type return type of tuple_factory

Raises attr.exceptions.NotAnAttrsClassError – If cls is not an attrs class.

New in version 16.2.0.

For example:

>>> @attr.s
... class C(object):
... x = attr.ib()
... y = attr.ib()
>>> attr.astuple(C(1,2))
(1, 2)

attrs includes some handy helpers for filtering:

attr.filters.include(*what)
Whitelist what.

Parameters what (list of type or attr.Attributes) – What to whitelist.

Return type callable

attr.filters.exclude(*what)
Blacklist what.

Parameters what (list of classes or attr.Attributes.) – What to blacklist.

Return type callable

See Converting to Collections Types for examples.

attr.evolve(inst, **changes)
Create a new instance, based on inst with changes applied.

Parameters

56 Chapter 6. Full Table of Contents

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/stdtypes.html#list

attrs, Release 18.1.0

• inst – Instance of a class with attrs attributes.

• changes – Keyword changes in the new copy.

Returns A copy of inst with changes incorporated.

Raises

• TypeError – If attr_name couldn’t be found in the class __init__.

• attr.exceptions.NotAnAttrsClassError – If cls is not an attrs class.

New in version 17.1.0.

For example:

>>> @attr.s
... class C(object):
... x = attr.ib()
... y = attr.ib()
>>> i1 = C(1, 2)
>>> i1
C(x=1, y=2)
>>> i2 = attr.evolve(i1, y=3)
>>> i2
C(x=1, y=3)
>>> i1 == i2
False

evolve creates a new instance using __init__. This fact has several implications:

• private attributes should be specified without the leading underscore, just like in __init__.

• attributes with init=False can’t be set with evolve.

• the usual __init__ validators will validate the new values.

attr.validate(inst)
Validate all attributes on inst that have a validator.

Leaves all exceptions through.

Parameters inst – Instance of a class with attrs attributes.

For example:

>>> @attr.s
... class C(object):
... x = attr.ib(validator=attr.validators.instance_of(int))
>>> i = C(1)
>>> i.x = "1"
>>> attr.validate(i)
Traceback (most recent call last):

...
TypeError: ("'x' must be <type 'int'> (got '1' that is a <type 'str'>).",
→˓Attribute(name='x', default=NOTHING, validator=<instance_of validator for type
→˓<type 'int'>>, repr=True, cmp=True, hash=None, init=True, type=None), <type 'int
→˓'>, '1')

Validators can be globally disabled if you want to run them only in development and tests but not in production because
you fear their performance impact:

attr.set_run_validators(run)
Set whether or not validators are run. By default, they are run.

6.6. API Reference 57

https://docs.python.org/3/library/exceptions.html#TypeError

attrs, Release 18.1.0

attr.get_run_validators()
Return whether or not validators are run.

6.6.3 Validators

attrs comes with some common validators in the attrs.validators module:

attr.validators.instance_of(type)
A validator that raises a TypeError if the initializer is called with a wrong type for this particular attribute
(checks are performed using isinstance() therefore it’s also valid to pass a tuple of types).

Parameters type (type or tuple of types) – The type to check for.

Raises TypeError – With a human readable error message, the attribute (of type attr.
Attribute), the expected type, and the value it got.

For example:

>>> @attr.s
... class C(object):
... x = attr.ib(validator=attr.validators.instance_of(int))
>>> C(42)
C(x=42)
>>> C("42")
Traceback (most recent call last):

...
TypeError: ("'x' must be <type 'int'> (got '42' that is a <type 'str'>).",
→˓Attribute(name='x', default=NOTHING, validator=<instance_of validator for type
→˓<type 'int'>>, type=None), <type 'int'>, '42')
>>> C(None)
Traceback (most recent call last):

...
TypeError: ("'x' must be <type 'int'> (got None that is a <type 'NoneType'>).",
→˓Attribute(name='x', default=NOTHING, validator=<instance_of validator for type
→˓<type 'int'>>, repr=True, cmp=True, hash=None, init=True, type=None), <type 'int
→˓'>, None)

attr.validators.in_(options)
A validator that raises a ValueError if the initializer is called with a value that does not belong in the options
provided. The check is performed using value in options.

Parameters options (list, tuple, enum.Enum, . . .) – Allowed options.

Raises ValueError – With a human readable error message, the attribute (of type attr.
Attribute), the expected options, and the value it got.

New in version 17.1.0.

For example:

>>> import enum
>>> class State(enum.Enum):
... ON = "on"
... OFF = "off"
>>> @attr.s
... class C(object):
... state = attr.ib(validator=attr.validators.in_(State))
... val = attr.ib(validator=attr.validators.in_([1, 2, 3]))
>>> C(State.ON, 1)

(continues on next page)

58 Chapter 6. Full Table of Contents

https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/functions.html#isinstance
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/enum.html#enum.Enum
https://docs.python.org/3/library/exceptions.html#ValueError

attrs, Release 18.1.0

(continued from previous page)

C(state=<State.ON: 'on'>, val=1)
>>> C("on", 1)
Traceback (most recent call last):

...
ValueError: 'state' must be in <enum 'State'> (got 'on')
>>> C(State.ON, 4)
Traceback (most recent call last):

...
ValueError: 'val' must be in [1, 2, 3] (got 4)

attr.validators.provides(interface)
A validator that raises a TypeError if the initializer is called with an object that does not provide the requested
interface (checks are performed using interface.providedBy(value) (see zope.interface).

Parameters interface (zope.interface.Interface) – The interface to check for.

Raises TypeError – With a human readable error message, the attribute (of type attr.
Attribute), the expected interface, and the value it got.

attr.validators.and_(*validators)
A validator that composes multiple validators into one.

When called on a value, it runs all wrapped validators.

Parameters validators (callables) – Arbitrary number of validators.

New in version 17.1.0.

For convenience, it’s also possible to pass a list to attr.ib()’s validator argument.

Thus the following two statements are equivalent:

x = attr.ib(validator=attr.validators.and_(v1, v2, v3))
x = attr.ib(validator=[v1, v2, v3])

attr.validators.optional(validator)
A validator that makes an attribute optional. An optional attribute is one which can be set to None in addition
to satisfying the requirements of the sub-validator.

Parameters validator (callable or list of callables.) – A validator (or a list of validators) that
is used for non-None values.

New in version 15.1.0.

Changed in version 17.1.0: validator can be a list of validators.

For example:

>>> @attr.s
... class C(object):
... x = attr.ib(validator=attr.validators.optional(attr.validators.instance_
→˓of(int)))
>>> C(42)
C(x=42)
>>> C("42")
Traceback (most recent call last):

...
TypeError: ("'x' must be <type 'int'> (got '42' that is a <type 'str'>).",
→˓Attribute(name='x', default=NOTHING, validator=<instance_of validator for type
→˓<type 'int'>>, type=None), <type 'int'>, '42')

(continues on next page)

6.6. API Reference 59

https://docs.python.org/3/library/exceptions.html#TypeError
https://zopeinterface.readthedocs.io/en/latest/
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#list

attrs, Release 18.1.0

(continued from previous page)

>>> C(None)
C(x=None)

6.6.4 Converters

attr.converters.optional(converter)
A converter that allows an attribute to be optional. An optional attribute is one which can be set to None.

Parameters converter (callable) – the converter that is used for non-None values.

New in version 17.1.0.

For example:

>>> @attr.s
... class C(object):
... x = attr.ib(converter=attr.converters.optional(int))
>>> C(None)
C(x=None)
>>> C(42)
C(x=42)

6.6.5 Deprecated APIs

The serious business aliases used to be called attr.attributes and attr.attr. There are no plans to remove
them but they shouldn’t be used in new code.

attr.assoc(inst, **changes)
Copy inst and apply changes.

Parameters

• inst – Instance of a class with attrs attributes.

• changes – Keyword changes in the new copy.

Returns A copy of inst with changes incorporated.

Raises

• attr.exceptions.AttrsAttributeNotFoundError – If attr_name couldn’t be
found on cls.

• attr.exceptions.NotAnAttrsClassError – If cls is not an attrs class.

Deprecated since version 17.1.0: Use evolve() instead.

6.7 Extending

Each attrs-decorated class has a __attrs_attrs__ class attribute. It is a tuple of attr.Attribute carrying
meta-data about each attribute.

So it is fairly simple to build your own decorators on top of attrs:

60 Chapter 6. Full Table of Contents

attrs, Release 18.1.0

>>> import attr
>>> def print_attrs(cls):
... print(cls.__attrs_attrs__)
>>> @print_attrs
... @attr.s
... class C(object):
... a = attr.ib()
(Attribute(name='a', default=NOTHING, validator=None, repr=True, cmp=True, hash=None,
→˓init=True, metadata=mappingproxy({}), type=None, converter=None),)

Warning: The attr.s() decorator must be applied first because it puts __attrs_attrs__ in place! That
means that is has to come after your decorator because:

@a
@b
def f():

pass

is just syntactic sugar for:

def original_f():
pass

f = a(b(original_f))

6.7.1 Wrapping the Decorator

A more elegant way can be to wrap attrs altogether and build a class DSL on top of it.

An example for that is the package environ_config that uses attrs under the hood to define environment-based
configurations declaratively without exposing attrs APIs at all.

6.7.2 Types

attrs offers two ways of attaching type information to attributes:

• PEP 526 annotations on Python 3.6 and later,

• and the type argument to attr.ib().

This information is available to you:

>>> import attr
>>> @attr.s
... class C(object):
... x: int = attr.ib()
... y = attr.ib(type=str)
>>> attr.fields(C).x.type
<class 'int'>
>>> attr.fields(C).y.type
<class 'str'>

Currently, attrs doesn’t do anything with this information but it’s very useful if you’d like to write your own
validators or serializers!

6.7. Extending 61

https://en.wikipedia.org/wiki/Syntactic_sugar
https://en.wikipedia.org/wiki/Domain-specific_language
https://github.com/hynek/environ_config
https://www.python.org/dev/peps/pep-0526/

attrs, Release 18.1.0

6.7.3 Metadata

If you’re the author of a third-party library with attrs integration, you may want to take advantage of attribute
metadata.

Here are some tips for effective use of metadata:

• Try making your metadata keys and values immutable. This keeps the entire Attribute instances immutable
too.

• To avoid metadata key collisions, consider exposing your metadata keys from your modules.:

from mylib import MY_METADATA_KEY

@attr.s
class C(object):
x = attr.ib(metadata={MY_METADATA_KEY: 1})

Metadata should be composable, so consider supporting this approach even if you decide implementing your
metadata in one of the following ways.

• Expose attr.ib wrappers for your specific metadata. This is a more graceful approach if your users don’t
require metadata from other libraries.

>>> MY_TYPE_METADATA = '__my_type_metadata'
>>>
>>> def typed(cls, default=attr.NOTHING, validator=None, repr=True, cmp=True,
→˓hash=None, init=True, convert=None, metadata={}):
... metadata = dict() if not metadata else metadata
... metadata[MY_TYPE_METADATA] = cls
... return attr.ib(default, validator, repr, cmp, hash, init, convert,
→˓metadata)
>>>
>>> @attr.s
... class C(object):
... x = typed(int, default=1, init=False)
>>> attr.fields(C).x.metadata[MY_TYPE_METADATA]
<class 'int'>

6.8 How Does It Work?

6.8.1 Boilerplate

attrs certainly isn’t the first library that aims to simplify class definition in Python. But its declarative approach
combined with no runtime overhead lets it stand out.

Once you apply the @attr.s decorator to a class, attrs searches the class object for instances of attr.ibs.
Internally they’re a representation of the data passed into attr.ib along with a counter to preserve the order of the
attributes.

In order to ensure that sub-classing works as you’d expect it to work, attrs also walks the class hierarchy and collects
the attributes of all super-classes. Please note that attrs does not call super() ever. It will write dunder methods
to work on all of those attributes which also has performance benefits due to fewer function calls.

Once attrs knows what attributes it has to work on, it writes the requested dunder methods and – depending on
whether you wish to have a dict or slotted class – creates a new class for you (slots=True) or attaches them to

62 Chapter 6. Full Table of Contents

attrs, Release 18.1.0

the original class (slots=False). While creating new classes is more elegant, we’ve run into several edge cases
surrounding metaclasses that make it impossible to go this route unconditionally.

To be very clear: if you define a class with a single attribute without a default value, the generated __init__ will
look exactly how you’d expect:

>>> import attr, inspect
>>> @attr.s
... class C(object):
... x = attr.ib()
>>> print(inspect.getsource(C.__init__))
def __init__(self, x):

self.x = x

No magic, no meta programming, no expensive introspection at runtime.

Everything until this point happens exactly once when the class is defined. As soon as a class is done, it’s done. And
it’s just a regular Python class like any other, except for a single __attrs_attrs__ attribute that can be used for
introspection or for writing your own tools and decorators on top of attrs (like attr.asdict()).

And once you start instantiating your classes, attrs is out of your way completely.

This static approach was very much a design goal of attrs and what I strongly believe makes it distinct.

6.8.2 Immutability

In order to give you immutability, attrs will attach a __setattr__ method to your class that raises a attr.
exceptions.FrozenInstanceError whenever anyone tries to set an attribute.

Depending on whether of not a class is a dict class or a slots class, attrs uses a different technique to circumvent
that limitation in the __init__ method.

Once constructed, frozen instances don’t differ in any way from regular ones except that you cannot change its at-
tributes.

Dict Classes

Dict classes – i.e. regular classes – simply assign the value directly into the class’ eponymous __dict__ (and there’s
nothing we can do to stop the user to do the same).

The performance impact is negligible.

Slots Classes

Slots classes are more complicated. Here it uses (an aggressively cached) object.__setattr__() to set your
attributes. This is (still) slower than a plain assignment:

$ pyperf timeit --rigorous \
-s "import attr; C = attr.make_class('C', ['x', 'y', 'z'], slots=True)" \
"C(1, 2, 3)"

..
Median +- std dev: 378 ns +- 12 ns

$ pyperf timeit --rigorous \

(continues on next page)

6.8. How Does It Work? 63

https://docs.python.org/3/reference/datamodel.html#object.__setattr__

attrs, Release 18.1.0

(continued from previous page)

-s "import attr; C = attr.make_class('C', ['x', 'y', 'z'], slots=True,
→˓frozen=True)" \

"C(1, 2, 3)"
..
Median +- std dev: 676 ns +- 16 ns

So on a standard notebook the difference is about 300 nanoseconds (1 second is 1,000,000,000 nanoseconds). It’s
certainly something you’ll feel in a hot loop but shouldn’t matter in normal code. Pick what’s more important to you.

Summary

You should avoid to instantiate lots of frozen slotted classes (i.e. @attr.s(slots=True, frozen=True)) in
performance-critical code.

Frozen dict classes have barely a performance impact, unfrozen slotted classes are even faster than unfrozen dict
classes (i.e. regular classes).

6.9 Glossary

dict classes A regular class whose attributes are stored in the __dict__ attribute of every single instance. This
is quite wasteful especially for objects with very few data attributes and the space consumption can become
significant when creating large numbers of instances.

This is the type of class you get by default both with and without attrs.

slotted classes A class that has no __dict__ attribute and defines its attributes in a __slots__ attribute instead.
In attrs, they are created by passing slots=True to @attr.s.

Their main advantage is that they use less memory on CPython1.

However they also come with a bunch of possibly surprising gotchas:

• Slotted classes don’t allow for any other attribute to be set except for those defined in one of the class’
hierarchies __slots__:

>>> import attr
>>> @attr.s(slots=True)
... class Coordinates(object):
... x = attr.ib()
... y = attr.ib()
...
>>> c = Coordinates(x=1, y=2)
>>> c.z = 3
Traceback (most recent call last):

...
AttributeError: 'Coordinates' object has no attribute 'z'

• Slotted classes can inherit from other classes just like non-slotted classes, but some of the benefits of
slotted classes are lost if you do that. If you must inherit from other classes, try to inherit only from other
slot classes.

• Using pickle with slotted classes requires pickle protocol 2 or greater. Python 2 uses protocol 0 by
default so the protocol needs to be specified. Python 3 uses protocol 3 by default. You can support protocol
0 and 1 by implementing __getstate__ and __setstate__ methods yourself. Those methods are

1 On PyPy, there is no memory advantage in using slotted classes.

64 Chapter 6. Full Table of Contents

https://docs.python.org/3/reference/datamodel.html#slots
https://docs.python.org/3/library/pickle.html#module-pickle
https://docs.python.org/3/library/pickle.html#object.__getstate__
https://docs.python.org/3/library/pickle.html#object.__setstate__

attrs, Release 18.1.0

created for frozen slotted classes because they won’t pickle otherwise. Think twice before using pickle
though.

• As always with slotted classes, you must specify a __weakref__ slot if you wish for the class to be
weak-referenceable. Here’s how it looks using attrs:

>>> import weakref
>>> @attr.s(slots=True)
... class C(object):
... __weakref__ = attr.ib(init=False, hash=False, repr=False, cmp=False)
... x = attr.ib()
>>> c = C(1)
>>> weakref.ref(c)
<weakref at 0x...; to 'C' at 0x...>

• Since it’s currently impossible to make a class slotted after it’s created, attrs has to replace your
class with a new one. While it tries to do that as graciously as possible, certain metaclass features like
__init_subclass__ do not work with slotted classes.

6.9. Glossary 65

https://www.youtube.com/watch?v=7KnfGDajDQw
https://docs.python.org/3/library/pickle.html#module-pickle

attrs, Release 18.1.0

66 Chapter 6. Full Table of Contents

CHAPTER 7

Indices and tables

• genindex

• search

67

attrs, Release 18.1.0

68 Chapter 7. Indices and tables

Index

A
and_() (in module attr.validators), 59
asdict() (in module attr), 55
assoc() (in module attr), 60
astuple() (in module attr), 56
Attribute (class in attr), 51
AttrsAttributeNotFoundError, 53

D
DefaultAlreadySetError, 53
dict classes, 64

E
evolve() (in module attr), 56
exclude() (in module attr.filters), 56

F
Factory (class in attr), 52
fields() (in module attr), 53
fields_dict() (in module attr), 54
FrozenInstanceError, 53

G
get_run_validators() (in module attr), 57

H
has() (in module attr), 55

I
ib() (in module attr), 50
in_() (in module attr.validators), 58
include() (in module attr.filters), 56
instance_of() (in module attr.validators), 58

M
make_class() (in module attr), 52

N
NotAnAttrsClassError, 53

O
optional() (in module attr.converters), 60
optional() (in module attr.validators), 59

P
provides() (in module attr.validators), 59

S
s() (in module attr), 48
set_run_validators() (in module attr), 57
slotted classes, 64

U
UnannotatedAttributeError, 53

V
validate() (in module attr), 57

69

	Getting Started
	Day-to-Day Usage
	Testimonials
	Getting Help
	Project Information
	Full Table of Contents
	Indices and tables

